Resource page for the study of thrusts and dimensionless constants

• The Thrust of the Universe: What is it? (working draft)
• Measuring an Expanding Universe Using Planck Units (working draft)
• Visualizing the Universe (work in progress)

Naive Assumptions. Within our initial analysis, it seems that our fundamental assumptions are:

  • The infinite is the source of the finite, its structure and energy (thrust).
  • The primary bridges between the infinite and finite are the dimensionless constants.
  • A well-studied mechanism for thrust can be found within cellular division.
  • The structures of the small-scale universe give rise to the CERN-scale, human-scale, and large-scale structures.
  • The mathematics of period doubling bifurcation, pi, the coupling constant, point processes may hold clues to study.

###

Working Notes for Further Inspiration:
molecule

There are many books and articles about these constants; however, our primary reference is the 2006 article by Tegmark, Aguirre, Rees, Wilczek (TARW), “Dimensionless constants, cosmology and other dark matters” where they identify 31 dimensionless physical constants (PDF). The Planck Length (space) and Planck Time are two of their 31.

There are well over 100 additional dimensionless quantities and, in time, all of these that follow will be analyzed in light of our base-2 exponentiation numbers and the thrust of the universe.

Wikipedia's Dimensionless Quantities: Thank You!
NameStandard symbolDefinitionField of application
Abbe numberV V = \frac{ n_d - 1 }{ n_F - n_C }optics (dispersion in optical materials)
Activity coefficient\gamma  \gamma= \frac {{a}}{{x}} chemistry (Proportion of “active” molecules or atoms)
Albedo α ( \alpha )
\alpha= (1-D) \bar \alpha(\theta_i) + D \bar{ \bar \alpha}climatology, astronomy (reflectivity of surfaces or bodies)
Archimedes numberAr \mathrm{Ar} = \frac{g L^3 \rho_\ell (\rho - \rho_\ell)}{\mu^2}fluid mechanics (motion of fluids due to density differences)
Arrhenius number\alpha \alpha = \frac{E_a}{RT} chemistry (ratio of activation energy to thermal energy)[1]
Atomic weightM chemistry (mass of atom over one atomic mass unit, u, where carbon-12 is exactly 12 u)
Atwood numberA \mathrm{A} = \frac{\rho_1 - \rho_2} {\rho_1 + \rho_2} fluid mechanics (onset of instabilities in fluid mixtures due to density differences)
Bagnold numberBa\mathrm{Ba} = \frac{\rho d^2 \lambda^{1/2} \gamma}{\mu}fluid mechanics, geology (ratio of grain collision stresses to viscous fluid stresses in flow of a granular material such as grain and sand)[2]
Bejan number
(fluid mechanics)
Be \mathrm{Be} = \frac{\Delta P L^2} {\mu \alpha}fluid mechanics (dimensionless pressure drop along a channel)[3]
Bejan number
(thermodynamics)
Be\mathrm{Be} = \frac{\dot S'_{\mathrm{gen},\, \Delta T}}{\dot S'_{\mathrm{gen},\, \Delta T}+ \dot S'_{\mathrm{gen},\, \Delta p}}thermodynamics (ratio of heat transfer irreversibility to total irreversibility due to heat transfer and fluid friction)[4]
Bingham numberBm\mathrm{Bm} = \frac{ \tau_y L }{ \mu V }fluid mechanics, rheology (ratio of yield stress to viscous stress)[1]
Biot numberBi\mathrm{Bi} = \frac{h L_C}{k_b}heat transfer (surface vs. volume conductivity of solids)
Blake numberBl or B\mathrm{B} = \frac{u \rho}{\mu (1 - \epsilon) D}geology, fluid mechanics, porous media (inertial over viscous forces in fluid flow through porous media)
Bodenstein numberBo or Bd\mathrm{Bo} = vL/\mathcal{D} = \mathrm{Re}\, \mathrm{Sc} chemistry (residence-time distribution; similar to the axial mass transfer Peclet number)[5]
Bond numberBo \mathrm{Bo} = \frac{\rho a L^2}{\gamma}geology, fluid mechanics, porous media (buoyant versus capillary forces, similar to the Eötvös number) [6]
Brinkman numberBr  \mathrm{Br} = \frac {\mu U^2}{\kappa (T_w - T_0)}heat transfer, fluid mechanics (conduction from a wall to a viscous fluid)
Brownell–Katz numberNBK\mathrm{N}_\mathrm{BK} = \frac{u \mu}{k_\mathrm{rw}\sigma} fluid mechanics (combination of capillary number and Bond number) [7]
Capillary numberCa\mathrm{Ca} = \frac{\mu V}{\gamma} porous media, fluid mechanics (viscous forces versus surface tension)
Chandrasekhar numberQ \mathrm{Q} = \frac{{B_0}^2 d^2}{\mu_0 \rho \nu \lambda} magnetohydrodynamics (ratio of the Lorentz force to the viscosity in magnetic convection)
Colburn J factorsJM, JH, JD turbulence; heat, mass, and momentum transfer (dimensionless transfer coefficients)
Coefficient of kinetic friction \mu _{k} mechanics (friction of solid bodies in translational motion)
Coefficient of static friction \mu _{s} mechanics (friction of solid bodies at rest)
Coefficient of determination R^{2} statistics (proportion of variance explained by a statistical model)
Coefficient of variation {\frac {\sigma }{\mu }} {\frac {\sigma }{\mu }}statistics (ratio of standard deviation to expectation)
Cohesion numberCoh{\displaystyle Coh={\frac {1}{\rho g}}\left({\frac {\Gamma ^{5}}{{E^{*}}^{2}{R^{*}}^{8}}}\right)^{\frac {1}{3}}}Chemical engineering, material science, mechanics (A scale to show the energy needed for detaching two solid particles)
Correlationρ or r{\displaystyle {\frac {\operatorname {E} [(X-\mu _{X})(Y-\mu _{Y})]}{\sigma _{X}\sigma _{Y}}}}statistics (measure of linear dependence)
Cost of transportCOT {\displaystyle \mathrm {COT} ={\frac {E}{mgd}}}energy efficiency, economics (ratio of energy input to kinetic motion)
Courant–Friedrich–Levy numberC or 𝜈 C = \frac {u\,\Delta t} {\Delta x}mathematics (numerical solutions of hyperbolic PDEs)[8]
Damkohler numberDa  \mathrm{Da} = k \tauchemistry (reaction time scales vs. residence time)
Damping ratio \zeta  \zeta = \frac{c}{2 \sqrt{km}}mechanics (the level of damping in a system)
Darcy friction factorCf or fD fluid mechanics (fraction of pressure losses due to friction in a pipe; four times the Fanning friction factor)
Darcy numberDa \mathrm{Da} = \frac{K}{d^2}porous media (ratio of permeability to cross-sectional area)
Dean numberD\mathrm{D} = \frac{\rho V d}{\mu} \left( \frac{d}{2 R} \right)^{1/2}turbulent flow (vortices in curved ducts)
Deborah numberDe  \mathrm{De} = \frac{t_\mathrm{c}}{t_\mathrm{p}}rheology (viscoelastic fluids)
DecibeldB acoustics, electronics, control theory (ratio of two intensities or powers of a wave)
Drag coefficientcd c_\mathrm{d} = \dfrac{2 F_\mathrm{d}}{\rho v^2 A}\, ,aeronautics, fluid dynamics (resistance to fluid motion)
Dukhin numberDu  \mathrm{Du} = \frac{\kappa^{\sigma}}{{\Kappa_m} a}colloid science (ratio of electric surface conductivity to the electric bulk conductivity in heterogeneous systems)
Eckert numberEc  \mathrm{Ec} = \frac{V^2}{c_p\Delta T}  convective heat transfer (characterizes dissipation of energy; ratio of kinetic energy to enthalpy)
Ekman numberEk \mathrm{Ek} = \frac{\nu}{2D^2\Omega\sin\varphi} geophysics (viscous versus Coriolis forces)
Elasticity
(economics)
E E_{x,y} = \frac{\partial \ln(x)}{\partial \ln(y)} = \frac{\partial x}{\partial y}\frac{y}{x}economics (response of demand or supply to price changes)
Eötvös numberEo\mathrm{Eo}=\frac{\Delta\rho \,g \,L^2}{\sigma}fluid mechanics (shape of bubbles or drops)
Ericksen numberEr \mathrm{Er}=\frac{\mu v L}{K}fluid dynamics (liquid crystal flow behavior; viscous over elastic forces)
Euler numberEu  \mathrm{Eu}=\frac{\Delta{}p}{\rho V^2} hydrodynamics (stream pressure versus inertia forces)
Euler’s numberee =  \displaystyle\sum\limits_{n = 0}^{ \infty} \dfrac{1}{n!} \approx 2.71828 mathematics (base of the natural logarithm)
Excess temperature coefficient \Theta_r\Theta_r = \frac{c_p (T-T_e)}{U_e^2/2}heat transfer, fluid dynamics (change in internal energy versus kinetic energy)[9]
Fanning friction factorf fluid mechanics (fraction of pressure losses due to friction in a pipe; 1/4th the Darcy friction factor)[10]
Feigenbaum constants \alpha , \delta \alpha \approx 2.50290,\ \delta \approx 4.66920 chaos theory (period doubling)[11]
Fine structure constant \alpha {\displaystyle \alpha ={\frac {e^{2}}{4\pi \varepsilon _{0}hc}}}quantum electrodynamics (QED) (coupling constant characterizing the strength of the electromagnetic interaction)
f-numberf  f = \frac {{\ell}}{{D}}optics, photography (ratio of focal length to diameter of aperture)
Föppl–von Kármán number \gamma \gamma = \frac{Y r^2}{\kappa}virology, solid mechanics (thin-shell buckling)
Fourier numberFo\mathrm{Fo} = \frac{\alpha t}{L^2}heat transfer, mass transfer (ratio of diffusive rate versus storage rate)
Fresnel numberF \mathit{F} = \frac{a^{2}}{L \lambda}optics (slit diffraction)[12]
Froude numberFr\mathrm{Fr} = \frac{v}{\sqrt{g\ell}}fluid mechanics (wave and surface behaviour; ratio of a body’s inertia to gravitational forces)
Gain electronics (signal output to signal input)
Gain ratio bicycling (system of representing gearing; length traveled over length pedaled)[13]
Galilei numberGa\mathrm{Ga} = \frac{g\, L^3}{\nu^2}fluid mechanics (gravitational over viscous forces)
Golden ratio \varphi \varphi = \frac{1+\sqrt{5}}{2} \approx 1.61803mathematics, aesthetics (long side length of self-similar rectangle)
Hereinafter the formatting instructions (code) to generate the mathematical formulas will be left in place so we all can learn the code that generates each of these exquisite formulae.
Görtler numberG G = U e θ ν ( θ R ) 1 / 2 {\displaystyle \mathrm {G} ={\frac {U_{e}\theta }{\nu }}\left({\frac {\theta }{R}}\right)^{1/2}} \mathrm{G} = \frac{U_e \theta}{\nu} \left( \frac{\theta}{R} \right)^{1/2}fluid dynamics (boundary layer flow along a concave wall)
Graetz numberGz G z = D H L R e P r {\displaystyle \mathrm {Gz} ={D_{H} \over L}\mathrm {Re} \,\mathrm {Pr} } \mathrm{Gz} = {D_H \over L} \mathrm{Re}\, \mathrm{Pr}heat transfer, fluid mechanics (laminar flow through a conduit; also used in mass transfer)
Grashof numberGr G r L = g β ( T s − T ∞ ) L 3 ν 2 {\displaystyle \mathrm {Gr} _{L}={\frac {g\beta (T_{s}-T_{\infty })L^{3}}{\nu ^{2}}}}  \mathrm{Gr}_L = \frac{g \beta (T_s - T_\infty ) L^3}{\nu ^2}heat transfer, natural convection (ratio of the buoyancy to viscous force)
Gravitational coupling constant α G {\displaystyle \alpha _{G}} \alpha _{G} α G = G m e 2 ℏ c {\displaystyle \alpha _{G}={\frac {Gm_{e}^{2}}{\hbar c}}} \alpha_G=\frac{Gm_e^2}{\hbar c}gravitation (attraction between two massy elementary particles; analogous to the Fine structure constant)
Hatta numberHa H a = N A 0 N A 0 p h y s {\displaystyle \mathrm {Ha} ={\frac {N_{\mathrm {A} 0}}{N_{\mathrm {A} 0}^{\mathrm {phys} }}}} \mathrm{Ha} = \frac{N_{\mathrm{A}0}}{N_{\mathrm{A}0}^{\mathrm{phys}}} chemical engineering (adsorption enhancement due to chemical reaction)
Hagen numberHg H g = − 1 ρ d p d x L 3 ν 2 {\displaystyle \mathrm {Hg} =-{\frac {1}{\rho }}{\frac {\mathrm {d} p}{\mathrm {d} x}}{\frac {L^{3}}{\nu ^{2}}}}  \mathrm{Hg} = -\frac{1}{\rho}\frac{\mathrm{d} p}{\mathrm{d} x}\frac{L^3}{\nu^2} heat transfer (ratio of the buoyancy to viscous force in forced convection)
Havnes parameter P H {\displaystyle P_{H}} {\displaystyle P_{H}} P H = Z d n d n i {\displaystyle P_{H}={\frac {Z_{d}n_{d}}{n_{i}}}} {\displaystyle P_{H}={\frac {Z_{d}n_{d}}{n_{i}}}}In Dusty plasma physics, ratio of the total charge Z d {\displaystyle Z_{d}} {\displaystyle Z_{d}} carried by the dust particles d {\displaystyle d} d to the charge carried by the ions i {\displaystyle i} i, with n {\displaystyle n} n the number density of particles
Hydraulic gradienti i = d h d l = h 2 − h 1 l e n g t h {\displaystyle i={\frac {\mathrm {d} h}{\mathrm {d} l}}={\frac {h_{2}-h_{1}}{\mathrm {length} }}} i = \frac{\mathrm{d}h}{\mathrm{d}l} = \frac{h_2 - h_1}{\mathrm{length}}fluid mechanics, groundwater flow (pressure head over distance)
Iribarren numberIr I r = tan ⁡ α H / L 0 {\displaystyle \mathrm {Ir} ={\frac {\tan \alpha }{\sqrt {H/L_{0}}}}} \mathrm{Ir} = \frac{\tan \alpha}{\sqrt{H/L_0}}wave mechanics (breaking surface gravity waves on a slope)
Jakob numberJa J a = c p ( T s − T s a t ) Δ H f {\displaystyle \mathrm {Ja} ={\frac {c_{p}(T_{\mathrm {s} }-T_{\mathrm {sat} })}{\Delta H_{\mathrm {f} }}}} \mathrm{Ja} = \frac{c_p (T_\mathrm{s} - T_\mathrm{sat}) }{\Delta H_{\mathrm{f}} }chemistry (ratio of sensible to latent energy absorbed during liquid-vapor phase change)[14]
Karlovitz numberKa K a = k t c {\displaystyle \mathrm {Ka} =kt_{c}} \mathrm{Ka} = k t_cturbulent combustion (characteristic flow time times flame stretch rate)
Keulegan–Carpenter numberKC K C = V T L {\displaystyle \mathrm {K_{C}} ={\frac {V\,T}{L}}} \mathrm{K_C} = \frac{V\,T}{L}fluid dynamics (ratio of drag force to inertia for a bluff object in oscillatory fluid flow)
Knudsen numberKn K n = λ L {\displaystyle \mathrm {Kn} ={\frac {\lambda }{L}}} \mathrm{Kn} = \frac {\lambda}{L}gas dynamics (ratio of the molecular mean free path length to a representative physical length scale)
Kt/VKt/V medicine (hemodialysis and peritoneal dialysis treatment; dimensionless time)
Kutateladze numberKu K u = U h ρ g 1 / 2 ( σ g ( ρ l − ρ g ) ) 1 / 4 {\displaystyle \mathrm {Ku} ={\frac {U_{h}\rho _{g}^{1/2}}{\left({\sigma g(\rho _{l}-\rho _{g})}\right)^{1/4}}}} \mathrm{Ku} = \frac{U_h \rho_g^{1/2}}{\left({\sigma g (\rho_l - \rho_g)}\right)^{1/4}}fluid mechanics (counter-current two-phase flow)[15]
Laplace numberLa L a = σ ρ L μ 2 {\displaystyle \mathrm {La} ={\frac {\sigma \rho L}{\mu ^{2}}}} \mathrm{La} = \frac{\sigma \rho L}{\mu^2}fluid dynamics (free convection within immiscible fluids; ratio of surface tension to momentum-transport)
Lewis numberLe L e = α D = S c P r {\displaystyle \mathrm {Le} ={\frac {\alpha }{D}}={\frac {\mathrm {Sc} }{\mathrm {Pr} }}} \mathrm{Le} = \frac{\alpha}{D} = \frac{\mathrm{Sc}}{\mathrm{Pr}}heat and mass transfer (ratio of thermal to mass diffusivity)
Lift coefficientCL C L = L q S {\displaystyle C_{\mathrm {L} }={\frac {L}{q\,S}}} C_\mathrm{L} = \frac{L}{q\,S}aerodynamics (lift available from an airfoil at a given angle of attack)
Lockhart–Martinelli parameter χ {\displaystyle \chi } \chi χ = m ℓ m g ρ g ρ ℓ {\displaystyle \chi ={\frac {m_{\ell }}{m_{g}}}{\sqrt {\frac {\rho _{g}}{\rho _{\ell }}}}} \chi = \frac{m_\ell}{m_g} \sqrt{\frac{\rho_g}{\rho_\ell}}two-phase flow (flow of wet gases; liquid fraction)[16]
Love numbersh, k, l geophysics (solidity of earth and other planets)
Lundquist numberS S = μ 0 L V A η {\displaystyle S={\frac {\mu _{0}LV_{A}}{\eta }}} S = \frac{\mu_0LV_A}{\eta}plasma physics (ratio of a resistive time to an Alfvén wave crossing time in a plasma)
Mach numberM or Ma M = v v s o u n d {\displaystyle \mathrm {M} ={\frac {v}{v_{\mathrm {sound} }}}}  \mathrm{M} = \frac{{v}}{{v_\mathrm{sound}}}gas dynamics (compressible flow; dimensionless velocity)
Magnetic Reynolds numberRm R m = U L η {\displaystyle \mathrm {R} _{\mathrm {m} }={\frac {UL}{\eta }}} \mathrm{R}_\mathrm{m} = \frac{U L}{\eta}magnetohydrodynamics (ratio of magnetic advection to magnetic diffusion)
Manning roughness coefficientn open channel flow (flow driven by gravity)[17]
Marangoni numberMg M g = − d σ d T L Δ T η α {\displaystyle \mathrm {Mg} =-{\frac {\mathrm {d} \sigma }{\mathrm {d} T}}{\frac {L\Delta T}{\eta \alpha }}} \mathrm{Mg} = - {\frac{\mathrm{d}\sigma}{\mathrm{d}T}}\frac{L \Delta T}{\eta \alpha} fluid mechanics (Marangoni flow; thermal surface tension forces over viscous forces)
Markstein numberMa M a = L b l f {\displaystyle \mathrm {Ma} ={\frac {{\mathcal {L}}_{b}}{l_{f}}}} {\displaystyle \mathrm {Ma} ={\frac {{\mathcal {L}}_{b}}{l_{f}}}}fluid dynamics, combustion (turbulent combustion flames)
Morton numberMo M o = g μ c 4 Δ ρ ρ c 2 σ 3 {\displaystyle \mathrm {Mo} ={\frac {g\mu _{c}^{4}\,\Delta \rho }{\rho _{c}^{2}\sigma ^{3}}}} \mathrm{Mo} = \frac{g \mu_c^4 \, \Delta \rho}{\rho_c^2 \sigma^3}  fluid dynamics (determination of bubble/drop shape)
Nusselt numberNu N u = h d k {\displaystyle \mathrm {Nu} ={\frac {hd}{k}}} \mathrm{Nu} =\frac{hd}{k}heat transfer (forced convection; ratio of convective to conductive heat transfer)
Ohnesorge numberOh O h = μ ρ σ L = W e R e {\displaystyle \mathrm {Oh} ={\frac {\mu }{\sqrt {\rho \sigma L}}}={\frac {\sqrt {\mathrm {We} }}{\mathrm {Re} }}}  \mathrm{Oh} = \frac{ \mu}{ \sqrt{\rho \sigma L }} = \frac{\sqrt{\mathrm{We}}}{\mathrm{Re}} fluid dynamics (atomization of liquids, Marangoni flow)
Péclet numberPe P e = d u ρ c p k = R e P r {\displaystyle \mathrm {Pe} ={\frac {du\rho c_{p}}{k}}=\mathrm {Re} \,\mathrm {Pr} } \mathrm{Pe} =  \frac{du\rho c_p}{k} = \mathrm{Re}\, \mathrm{Pr}heat transfer (advectiondiffusion problems; total momentum transfer to molecular heat transfer)
Peel numberNP N P = Restoring force Adhesive force {\displaystyle N_{\mathrm {P} }={\frac {\text{Restoring force}}{\text{Adhesive force}}}} N_\mathrm{P} = \frac{\text{Restoring force}}{\text{Adhesive force}}coating (adhesion of microstructures with substrate)[18]
PerveanceK K = I I 0 2 β 3 γ 3 ( 1 − γ 2 f e ) {\displaystyle {K}={\frac {I}{I_{0}}}\,{\frac {2}{{\beta }^{3}{\gamma }^{3}}}(1-\gamma ^{2}f_{e})} {K} = \frac{{I}}{{I_0}}\,\frac{{2}}{{\beta}^3{\gamma}^3} (1-\gamma^2f_e)charged particle transport (measure of the strength of space charge in a charged particle beam)
pH p H {\displaystyle \mathrm {pH} } \mathrm{pH} p H = − log 10 ⁡ ( a H + ) {\displaystyle \mathrm {pH} =-\log _{10}(a_{{\textrm {H}}^{+}})} {\displaystyle \mathrm {pH} =-\log _{10}(a_{{\textrm {H}}^{+}})}chemistry (the measure of the acidity or basicity of an aqueous solution)
Pi π {\displaystyle \pi } \pi π = C d ≈ 3.14159 {\displaystyle \pi ={\frac {C}{d}}\approx 3.14159} \pi = \frac{C}{d} \approx 3.14159mathematics (ratio of a circle‘s circumference to its diameter)
Pierce parameter C {\displaystyle C} C C 3 = Z c I K 4 V K {\displaystyle C^{3}={\frac {Z_{c}I_{K}}{4V_{K}}}} {\displaystyle C^{3}={\frac {Z_{c}I_{K}}{4V_{K}}}}Traveling wave tube
Pixelpx digital imaging (smallest addressable unit)
Beta (plasma physics) β {\displaystyle \beta } \beta β = n k B T B 2 / 2 μ 0 {\displaystyle \beta ={\frac {nk_{B}T}{B^{2}/2\mu _{0}}}} {\displaystyle \beta ={\frac {nk_{B}T}{B^{2}/2\mu _{0}}}}Plasma (physics) and Fusion power. Ratio of plasma thermal pressure to magnetic pressure, controlling the level of turbulence in a magnetised plasma.
Poisson’s ratio ν {\displaystyle \nu } \nu ν = − d ε t r a n s d ε a x i a l {\displaystyle \nu =-{\frac {\mathrm {d} \varepsilon _{\mathrm {trans} }}{\mathrm {d} \varepsilon _{\mathrm {axial} }}}} \nu = -\frac{\mathrm{d}\varepsilon_\mathrm{trans}}{\mathrm{d}\varepsilon_\mathrm{axial}} elasticity (strain in transverse and longitudinal direction)
Porosity ϕ {\displaystyle \phi } \phi ϕ = V V V T {\displaystyle \phi ={\frac {V_{\mathrm {V} }}{V_{\mathrm {T} }}}} \phi = \frac{V_\mathrm{V}}{V_\mathrm{T}}geology, porous media (void fraction of the medium)
Power factorpf p f = P S {\displaystyle pf={\frac {P}{S}}} {\displaystyle pf={\frac {P}{S}}}electrical (real power to apparent power)
Power numberNp N p = P ρ n 3 d 5 {\displaystyle N_{p}={P \over \rho n^{3}d^{5}}}  N_p = {P\over \rho n^3 d^5} electronics (power consumption by agitators; resistance force versus inertia force)
Prandtl numberPr P r = ν α = c p μ k {\displaystyle \mathrm {Pr} ={\frac {\nu }{\alpha }}={\frac {c_{p}\mu }{k}}} \mathrm{Pr} = \frac{\nu}{\alpha}  = \frac{c_p \mu}{k}heat transfer (ratio of viscous diffusion rate over thermal diffusion rate)
Prater numberβ β = − Δ H r D T A e C A S λ e T s {\displaystyle \beta ={\frac {-\Delta H_{r}D_{TA}^{e}C_{AS}}{\lambda ^{e}T_{s}}}} \beta = \frac{-\Delta H_r D_{TA}^e C_{AS}}{\lambda^e T_s}reaction engineering (ratio of heat evolution to heat conduction within a catalyst pellet)[19]
Pressure coefficientCP C p = p − p ∞ 1 2 ρ ∞ V ∞ 2 {\displaystyle C_{p}={p-p_{\infty } \over {\frac {1}{2}}\rho _{\infty }V_{\infty }^{2}}} C_p = {p - p_\infty \over \frac{1}{2} \rho_\infty V_\infty^2}aerodynamics, hydrodynamics (pressure experienced at a point on an airfoil; dimensionless pressure variable)
Q factorQ Q = 2 π f r Energy Stored Power Loss {\displaystyle Q=2\pi f_{r}{\frac {\text{Energy Stored}}{\text{Power Loss}}}} Q = 2 \pi f_r \frac{\text{Energy Stored}}{\text{Power Loss}}physics, engineering (damping of oscillator or resonator; energy stored versus energy lost)
Radian measurerad arc length / radius {\displaystyle {\text{arc length}}/{\text{radius}}} \text{arc length}/\text{radius}mathematics (measurement of planar angles, 1 radian = 180/π degrees)
Rayleigh numberRa R a x = g β ν α ( T s − T ∞ ) x 3 {\displaystyle \mathrm {Ra} _{x}={\frac {g\beta }{\nu \alpha }}(T_{s}-T_{\infty })x^{3}} \mathrm{Ra}_{x} = \frac{g \beta} {\nu \alpha} (T_s - T_\infin) x^3 heat transfer (buoyancy versus viscous forces in free convection)
Refractive indexn n = c v {\displaystyle n={\frac {c}{v}}} n=\frac{c}{v}electromagnetism, optics (speed of light in a vacuum over speed of light in a material)
Relative densityRD R D = ρ s u b s t a n c e ρ r e f e r e n c e {\displaystyle RD={\frac {\rho _{\mathrm {substance} }}{\rho _{\mathrm {reference} }}}} RD = \frac{\rho_\mathrm{substance}}{\rho_\mathrm{reference}}hydrometers, material comparisons (ratio of density of a material to a reference material—usually water)
Relative permeability μ r {\displaystyle \mu _{r}} \mu _{r} μ r = μ μ 0 {\displaystyle \mu _{r}={\frac {\mu }{\mu _{0}}}} \mu_r = \frac{\mu}{\mu_0}magnetostatics (ratio of the permeability of a specific medium to free space)
Relative permittivity ε r {\displaystyle \varepsilon _{r}} \varepsilon _{r} ε r = C x C 0 {\displaystyle \varepsilon _{r}={\frac {C_{x}}{C_{0}}}} \varepsilon_{r} = \frac{C_{x}} {C_{0}}electrostatics (ratio of capacitance of test capacitor with dielectric material versus vacuum)
Reynolds numberRe R e = v L ρ μ {\displaystyle \mathrm {Re} ={\frac {vL\rho }{\mu }}} \mathrm{Re} = \frac{vL\rho}{\mu}fluid mechanics (ratio of fluid inertial and viscous forces)[1]
Richardson numberRi R i = g h u 2 = 1 F r 2 {\displaystyle \mathrm {Ri} ={\frac {gh}{u^{2}}}={\frac {1}{\mathrm {Fr} ^{2}}}}  \mathrm{Ri} = \frac{gh}{u^2} = \frac{1}{\mathrm{Fr}^2} fluid dynamics (effect of buoyancy on flow stability; ratio of potential over kinetic energy)[20]
Rockwell scale mechanical hardness (indentation hardness of a material)
Rolling resistance coefficientCrr C r r = F N f {\displaystyle C_{rr}={\frac {F}{N_{f}}}} C_{rr} = \frac{F}{N_f} vehicle dynamics (ratio of force needed for motion of a wheel over the normal force)
Roshko numberRo R o = f L 2 ν = S t R e {\displaystyle \mathrm {Ro} ={fL^{2} \over \nu }=\mathrm {St} \,\mathrm {Re} }  \mathrm{Ro} = {f L^{2}\over \nu} =\mathrm{St}\,\mathrm{Re} fluid dynamics (oscillating flow, vortex shedding)
Rossby numberRo R o = U L f {\displaystyle \mathrm {Ro} ={\frac {U}{Lf}}} \mathrm{Ro}=\frac{U}{Lf}geophysics (ratio of inertial to Coriolis force)
Rouse numberP or Z P = w s κ u ∗ {\displaystyle \mathrm {P} ={\frac {w_{s}}{\kappa u_{*}}}} \mathrm{P} = \frac{w_s}{\kappa u_*}sediment transport (ratio of the sediment fall velocity and the upwards velocity of grain)
Schmidt numberSc S c = ν D {\displaystyle \mathrm {Sc} ={\frac {\nu }{D}}} \mathrm{Sc} = \frac{\nu}{D}mass transfer (viscous over molecular diffusion rate)[21]
Shape factorH H = δ ∗ θ {\displaystyle H={\frac {\delta ^{*}}{\theta }}} H = \frac {\delta^*}{\theta}boundary layer flow (ratio of displacement thickness to momentum thickness)
Sherwood numberSh S h = K L D {\displaystyle \mathrm {Sh} ={\frac {KL}{D}}} \mathrm{Sh} = \frac{K L}{D} mass transfer (forced convection; ratio of convective to diffusive mass transport)
Shields parameter τ ∗ {\displaystyle \tau _{*}} \tau_* or θ {\displaystyle \theta } \theta τ ∗ = τ ( ρ s − ρ ) g D {\displaystyle \tau _{\ast }={\frac {\tau }{(\rho _{s}-\rho )gD}}} \tau_{\ast} = \frac{\tau}{(\rho_s - \rho) g D}sediment transport (threshold of sediment movement due to fluid motion; dimensionless shear stress)
Sommerfeld numberS S = ( r c ) 2 μ N P {\displaystyle \mathrm {S} =\left({\frac {r}{c}}\right)^{2}{\frac {\mu N}{P}}}  \mathrm{S} = \left( \frac{r}{c} \right)^2 \frac {\mu N}{P}hydrodynamic lubrication (boundary lubrication)[22]
Specific gravitySG (same as Relative density)
Stanton numberSt S t = h c p ρ V = N u R e P r {\displaystyle \mathrm {St} ={\frac {h}{c_{p}\rho V}}={\frac {\mathrm {Nu} }{\mathrm {Re} \,\mathrm {Pr} }}} \mathrm{St} = \frac{h}{c_p \rho V} = \frac{\mathrm{Nu}}{\mathrm{Re}\,\mathrm{Pr}} heat transfer and fluid dynamics (forced convection)
Stefan numberSte S t e = c p Δ T L {\displaystyle \mathrm {Ste} ={\frac {c_{p}\Delta T}{L}}} \mathrm{Ste} = \frac{c_p \Delta T}{L}phase change, thermodynamics (ratio of sensible heat to latent heat)
Stokes numberStk or Sk S t k = τ U o d c {\displaystyle \mathrm {Stk} ={\frac {\tau U_{o}}{d_{c}}}} \mathrm{Stk} = \frac{\tau U_o}{d_c}particles suspensions (ratio of characteristic time of particle to time of flow)
Strain ϵ {\displaystyle \epsilon } \epsilon ϵ = ∂ F ∂ X − 1 {\displaystyle \epsilon ={\cfrac {\partial {F}}{\partial {X}}}-1} \epsilon = \cfrac{\partial{F}}{\partial{X}} - 1materials science, elasticity (displacement between particles in the body relative to a reference length)
Strouhal numberSt or Sr S t = ω L v {\displaystyle \mathrm {St} ={\omega L \over v}} \mathrm{St} = {\omega L\over v} fluid dynamics (continuous and pulsating flow; nondimensional frequency)[23]
Stuart numberN N = B 2 L c σ ρ U = H a 2 R e {\displaystyle \mathrm {N} ={\frac {B^{2}L_{c}\sigma }{\rho U}}={\frac {\mathrm {Ha} ^{2}}{\mathrm {Re} }}}  \mathrm{N} = \frac {B^2 L_{c} \sigma}{\rho U} = \frac{\mathrm{Ha}^2}{\mathrm{Re}} magnetohydrodynamics (ratio of electromagnetic to inertial forces)
Taylor numberTa T a = 4 Ω 2 R 4 ν 2 {\displaystyle \mathrm {Ta} ={\frac {4\Omega ^{2}R^{4}}{\nu ^{2}}}}  \mathrm{Ta} = \frac{4\Omega^2 R^4}{\nu^2}fluid dynamics (rotating fluid flows; inertial forces due to rotation of a fluid versus viscous forces)
TransmittanceT T = I I 0 {\displaystyle T={\frac {I}{I_{0}}}} T={\frac  {I}{I_{0}}}optics, spectroscopy (the ratio of the intensities of radiation exiting through and incident on a sample)
Ursell numberU U = H λ 2 h 3 {\displaystyle \mathrm {U} ={\frac {H\,\lambda ^{2}}{h^{3}}}} \mathrm{U} = \frac{H\, \lambda^2}{h^3}wave mechanics (nonlinearity of surface gravity waves on a shallow fluid layer)
Vadasz numberVa V a = ϕ P r D a {\displaystyle \mathrm {Va} ={\frac {\phi \,\mathrm {Pr} }{\mathrm {Da} }}} \mathrm{Va} = \frac{\phi\, \mathrm{Pr}}{\mathrm{Da}}porous media (governs the effects of porosity ϕ {\displaystyle \phi } \phi , the Prandtl number and the Darcy number on flow in a porous medium) [24]
van ‘t Hoff factori i = 1 + α ( n − 1 ) {\displaystyle i=1+\alpha (n-1)}  i = 1 + \alpha (n - 1)quantitative analysis (Kf and Kb)
Wallis parameterj* j ∗ = R ( ω ρ μ ) 1 2 {\displaystyle j^{*}=R\left({\frac {\omega \rho }{\mu }}\right)^{\frac {1}{2}}} j^* = R \left( \frac{\omega \rho}{\mu} \right)^\frac{1}{2}multiphase flows (nondimensional superficial velocity)[25]
Weaver flame speed numberWea W e a = w w H 100 {\displaystyle \mathrm {Wea} ={\frac {w}{w_{\mathrm {H} }}}100} \mathrm{Wea} = \frac{w}{w_\mathrm{H}} 100combustion (laminar burning velocity relative to hydrogen gas)[26]
Weber numberWe W e = ρ v 2 l σ {\displaystyle \mathrm {We} ={\frac {\rho v^{2}l}{\sigma }}} \mathrm{We} = \frac{\rho v^2 l}{\sigma}multiphase flow (strongly curved surfaces; ratio of inertia to surface tension)
Weissenberg numberWi W i = γ ˙ λ {\displaystyle \mathrm {Wi} ={\dot {\gamma }}\lambda } \mathrm{Wi} = \dot{\gamma} \lambda viscoelastic flows (shear rate times the relaxation time)[27]
Womersley number α {\displaystyle \alpha } \alpha α = R ( ω ρ μ ) 1 2 {\displaystyle \alpha =R\left({\frac {\omega \rho }{\mu }}\right)^{\frac {1}{2}}} \alpha = R \left( \frac{\omega \rho}{\mu} \right)^\frac{1}{2}biofluid mechanics (continuous and pulsating flows; ratio of pulsatile flow frequency to viscous effects)[28]
Zel’dovich number β {\displaystyle \beta } \beta β = E R T f T f − T o T f {\displaystyle \beta ={\frac {E}{RT_{f}}}{\frac {T_{f}-T_{o}}{T_{f}}}} {\displaystyle \beta ={\frac {E}{RT_{f}}}{\frac {T_{f}-T_{o}}{T_{f}}}}fluid dynamics, Combustion (Measure of activation energy)

###

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.