This natural inflation challenges the big bang.

Consider The First Fraction Of A Second

Comparison. The key difference between the big bang theories and this quiet expansion is about one picosecond  (just 10-12 seconds or  one trillionth of a second).  The following chart had been buried within a much larger document (that was started in June 2016). It has been extracted (August 2018) so we can focus on the differences between the two models and then begin to look at the connections between the two Standard Models.

Who? What? Why?
When? Where? How?


Who: The history of the Big Bang Theory (bbt) is highly documented. It is an intellectual cornerstone within experimental and theoretical physics, cosmology, and astrophysics.
What: To challenge the bbt appears foolhardy at best. Yet, there are many, many reasons to challenge it, but most of all because (1) it is overly complex and confusing, (2) it is not very good philosophy, and (3) it is very poor psychology.
Why: The first three key parts of the bbt, involving substantially less than a trillionth of a second, are based on hunches and a need to shoehorn data to support the model.

Wikipedia says, “Planck scale is beyond current physical theories; it has no predictive value. The Planck epoch is assumed (or theorized) to have been dominated by quantum effects of gravity.”

We say that the Planck scale is the starting point for the initial six notations (de facto defined by the bbt) and that these notations are shared by everything, everywhere in the universe. Painfully aware of the limitations of our vocabulary, these first notations are considered to be archetypal forms, structure and substance. Archetypal is used in the sense of the original pattern or model by which all things of the same type are representations, the prototype, or a perfect example. For more, see all of 67 encapsulating notations (opens in a new window or tab).

Both models have made key assumptions. We believe the QE model is internally more consistent, imaginative, and stimulating.

This “Singularity” Is a Meeting Place of Converging Formulae, perhaps also known as a Modulus-or-Nexus of Transformation

Keys to this Quiet Expansion: More than the big bang theory‘s four forces of nature — gravity, electromagnetism, the strong force, and the weak force — within this Planck scale we assume these four are encapsulated within all four Planck base units and the constants that define them, and some manifestation of this unification is carried throughout all 202 notations. And, as we have noted, the Planck base units are defined by length, time, mass,  and charge; and, these are further defined by the speed of light (or special relativity), the gravitational constant (or general relativity), the reduced Planck constant (or ħ or quantum mechanics), the Coulomb constant (or ε0 or electric charge or electromagnetism), and the Boltzmann constant (or kB or of temperature).

The Planck scale is not beyond logic, numbers, and conceptual integrity. Homogeneity, isotropy and simple logic rule. Yet, within the Quiet Expansion (QE) model, we have applied that simple logic somewhat arbitrarily by placing Planck Temperature at the top of the scale, just beyond the 202nd notation and then dividing by 2, it goes down approaching Absolute Zero. We are ready to adjust it at any time when a more integrative logic prevails! Also, we are increasingly finding a simple relational logic between the four original  Planck base units. Notwithstanding, this logic will be constantly revisited throughout our ever-so-slow development of QE model.

Within the QE model, the Planck Charge, a Coulombs value, is taken as given. Within the big bang theory (bbt), the Planck Charge is ignored. The bbt value is as large as possible. Their measurement is given in GeV units, one billion electron volts. Add 1016 zeroes and you have quite a charge.

To begin to understand all these numbers and their correlations, questions are asked, “Are these all non-repeating, never-ending numbers like Pi? Are all numbers that are non-repeating and never-ending somehow part of the infinite yet also the beginning of quantum mechanics?” The suggestion has been made that we carry out each of the Planck numbers at least 10 decimal places, and if need be, 100 decimal places, and possibly even 1000 decimal places, to see if patterns can be discerned. We recognize that relative to other units of measurement, such as the SI base quantities, the values of the Planck units are approximations mostly due to uncertainty in the value of the gravitational constant (G).

Big Bang Theory (bbt)

Planck epoch

Planck time:
<10−43 seconds
Planck Temperature:
1032 Kelvin
First key bbt error
Planck Energy:
1019 GeV
Second bbt error

unification epoch

<10−36 seconds
1016 GeV

Inflationary epoch
Electroweak epoch

<10−33 s to <10−32 seconds
(QE syncs to bbt time.)
1028 K to 1022 Kelvin
Expansion: 1026 meters
Editor: “science fiction”
Third bbt error

Quark epoch

Fourth error: >10−31 to
>10−12 seconds
1012 Kelvin
Notice there is a bbt

Hadron epoch

10−6 seconds to
10−1 seconds
1010 Kelvin to
109 Kelvin

Lepton epoch

1 second to
10 seconds
109 K
Note: QE temp higher

Photon epoch-Nucleosynthesis

10 seconds to
103 seconds to
1013 seconds
1011 Kelvin to
109 Kelvin to
103 Kelvin
10 MeV to
100 keV


Matter-dominated era

47 ka (47,000 years) to
10 Ga (10×109) years
104 Kelvin to
4 Kelvin


380 ka (380,000 years)
4000 Kelvin

Dark Ages

380 ka to
150 Ma (Mega-annus) or
150 million years
4000 Kelvin to
60 Kelvin

Stelliferous Era

150 Ma
(150 million years)
100 Ga
(150 billion years)
60 Kelvin to
0.03 Kelvin


~150 Ma to
1 Ga (1 Billion)
>60 K to
19 K

Galaxy formation and evolution

1 Ga to 10 Ga
19 Kelvin to 4 Kelvin

Dark-energy-dominated era

>10 Ga

Present time

13.8 Ga
2.7 Kelvin

Quiet Expansion (QE)

Notation 0-1
0 = Planck base units
Planck time:
5.39106×10−44 seconds
Notation 1: 1.0782−43 (s)
Notation 2: 2.156×10−43 (s)
Notation 0: 1.416×1032 Kelvin
Notation 1: 4.4×10-27 (K)
Notation 2: 8.8169×10-27 (K)
Notation 0: 1.8×10-18 Coulombs
Notation 1: 3.7511×10-18 (C)
Notation 2: 7.0523×10-18 (C)

Notation 7 to 31

Notation 2: 2.156×10−43 seconds
Notation 7: 6.901×10−42 (s)

Notation 31: 1.157×10−34 (s)
7.0523×10-18 (C)
Notation 31: 4.02×10-9 (C)

Notation 32 – 40

Notation 32: 2.31×10−34 seconds
Notation 40: 5.927×10−32 (s)
Notation 32: 1.89×10-19 Kelvin
Notation 40: 2.42×10-17 (K)
Notation 32: 6.94×10-26 meters
Notation 40: 1.77×10-23 (m)
Notation 32: 8.05×10-9 Coulombs
Notation 40: 2.06×10-6 (C)

Notation 41-104

Notation 41: 1.18×10−31 seconds
Notation 104: 1.09×10−12 (s)
Notation 41: 4.84×10-17 Kelvin
Notation 104: 4.47×102 (K)
(310K = 98.33°F, 36.85° C)

Notation 105142

Notation 105: 2.18×10−12 (s)
Notation 142: 3.0×10−1 (s)
Notation 105: 8.94×102 Kelvin
Notation 142: 6.14×1013 (K)

Notation 143147

Notation 143: 6.01×10−1 (s)
Notation 147: 9.61 (s)
Notation 143: 2.45×1014 Kelvin
Notation 147: 3.93×1015 (K)

Notation 147-154187

Notation 147: 9.6185 seconds
Notation 154: 1231.1 (s)
Notation 187: 1.05×1013 (s)
or 10,575,741,215,500 (s)
or 320± thousand years
Notation 147: 3.932×1015 Kelvin
Notation 154: 5.03×1017 (K)
Notation 187: 4.32×1027 (K)
Notation 147: 3.346×1026 (C)
Notation 154: 4.28×1028 (C)
Notation 187: 3.67×1038 (C)

Notation 184– 201

Notation 184: 1,321,967,651,940 seconds or 41,919.31 years
Notation 201: 10 billion years
Notation 184: 5.4×1026 Kelvin
Notation 201: 7.0×1031 (K)

Notation 187

10,575,741,215,500 (s)
320± thousand years
Notation 187: 3.6×1038 (C)

Notation 187-196

Notation 187: 320,000+ years
Notation 196:
171.2± million years
5,414,779,502,320,000 seconds
Notation 187: 4.3×1027 Kelvin
Notation 196: 2.2×1030 (K)

Notation 187-202

Notation 196:
171.2± million years
Notation 204+:
Distant future
Notations 196: 2.2×1030 (K)
Notation 204: 1.416×1032 (K)

Notation 187-189

Notation 187: 1.05×1013 seconds
or 320± thousand years to
Notation 189: 1.3± million years
Notation 187: 4.32×1027 Kelvin
Notation 189: 1.72×1028 (K)

Notation 187-202

Notation 189: 1.3± million years
Notation 201: 10 billion years

Notation 187-202

Notation 201: 10 billion years
Notation 201: 7.08×1031 Kelvin

Notation 202+

Notation 201: 13.8 billion years
Notation 201: 7.08×1031 Kelvin

The QE model holds that things are simple before complex and everything is related to everything. Imputed, hypostatized and/or hypothesized are pointfree vertices and simple geometries as the deep infrastructure that gives rise to the work on combinatorics, cellular automaton, cubic close packing, bifurcation theory (and the Feigenbaum’s constants), Langlands program, mereotopology (point-free geometry), the 80-known binary operations, and scalar field theory. Here are people working on theories and constructions of the simple, yet their concepts are anything but simple.
When: In the very beginning…
Wikipedia says that the Planck epoch requires speculative proposals, a “New Physics” such as “…the Hartle–Hawking initial state, string landscape, string gas cosmology, and the ekpyrotic universe.” Each is a conceptually-rich, dense jungle of ideas. Cutting through that entanglement is only for the highly-motivated and academically astute. Most of us will just go on to the grand unification epoch, in search of a logical system that builds consistently upon itself.

About the bbt model, Wikipedia simply says, “The three forces of the Standard Model are unified.” Of course, the QE goes much further, however, first consider a bbt problem. Electromagnetism, gravitation, weak nuclear interaction, and strong nuclear interaction are most often related to relations defined above the 65th notation.

Wikipedia says, “Cosmic inflation expands space by a factor of the order of 1026 over a time of the order of 10−33 to 10−32 seconds.[1] The universe is supercooled from about 1027 down to 1022 kelvins.[6] The Strong Nuclear Force becomes distinct from the Electroweak Force.” [1] (Our emphasis) First, consider that the Planck Temperature is 1.41683×1032 Kelvin. The bbt appears to skip the cooling from 1032 to 1027 Kelvin and it uses bubbly magic to address what causes the cooling to 1022 Kelvin. Also, consider the amount of expansion and the short duration assumed in their statement above. To create that much space in that short of an interval would require light to travel so far beyond its normal speed; it would constitute the penultimate anomaly (pardon us, Sean Carroll fans).

Also, because the bbt begins at the Planck Temperature, they truly need a supercooled concept. Within the Quiet Expansion model the temperatures from notations 1 through 102 are all superconducting, being well below the superconducting transition temperatures. Perhaps the very concept of temperature will become better understood as a result of our struggles to define a different model of the universe.

About this inflationary epoch, Wikipedia says, “The forces of the Standard Model have separated, but energies are too high for quarks to coalesce into hadrons, instead forming a quark-gluon plasma. These are the highest energies directly observable in experiment in the Large Hadron Collider.”

Call me “PÜQ”! Planck, Unification-inflation-electroweak, Quark epochs. PÜQ (vt.) To press together, to fit together (and also, the initials for the Presidente Carlos Ibáñez del Campo International Airport in the city of Punta Arenas in southern Chile in the Patagonia region of South America).  More to come…

Within the QE, the quark-gluon plasma which requires 1012 Kelvin, is between notation 135 and 136, 9.6008×1011 Kelvin to 1.92016×1012 Kelvin respectively. Notation 136 is 4.6965×10-3 seconds from their space-time “singularity.” One second is between Notations 143 and 144. Also, the Kelvin scale is counter-intuitive in many ways. The temperature of the Sun is about 5,778 K. Within the QE, that is expressed between Notations 107 (3.5765×103 K ) and 108 (7153.178 K). The human temperature at 98.6 degrees Fahrenheit is 310.15 Kelvin which is between Notations 103 and 104 (447.073 K). Also, at Notation 103 the Planck Length is now .163902142 millimeters or 1.63902142×10-4 meters or about the size of a human egg.

  1. How did it all begin? And, what does it mean? (January 2011)
  2. Quiet Expansion of the Universe (June 2016)
  3. A Chart: Our working, horizontally-scrolled chart is a most-simple, integrated model of the universe.
  4. Notations 1-202: An analysis notation by notation has just begun!
  5. Planck base units from 0 at the beginning to today: