###### Initiated: Wednesday, August 10, 2016 Subsequently: Small updates

Early draft. Data collection and analysis is ongoing.*

## Electroweak Epoch become Electroweak Processes

###### by Bruce Camber

Within cosmology the concept of an *Electroweak Epoch* implies a beginning and endpoint. Although it follows the Planck Epoch, the Grand Unification Epoch, and the Inflationary Epoch, it is the first “epoch” of the big bang theory (*bbt*) with concepts that can be researched and tested; it is not solely extracted from informed speculations. Because the actual dynamics of electroweak processes can be replicated within CERN laboratory in Geneva, any new results of current research become a major global event. That data is shared as quickly as possible with literally hundreds-of-thousands of our finest thinkers around the world who begin to analyze the data, ponder the implications, and attempt to incorporate that data within their own research.

But, what if our understanding of the first three epochs is wrong? What if there wasn’t a big bang but a quiet expansion of the Planck base units to the first instants of physicality? What if the universe never was infinitely hot and infinitely dense?

This rather idiosyncratic, naive idea is based on the simple math and simple logic of the Big Board-little universe (*BB-lu* also known as Bib-o’lu) project and the *Quiet Expansion (QE)*. Those of us who are exploring the BB-lu and *QE* would be the first to say, “It’s so simple, it’s simplistic.”

But, maybe not.

It seems that the electroweak processes can be even more pointedly studied and tested when examined within the numbers of the BB-lu and *QE* base-2 chart. The entire chart just might inform the coincidence problem — the nature of the vacuum, and the distribution of matter (including baryon and neutrino) and radiation energy densities throughout our Universe. That is, it just might inform dark energy and dark matter.

Although the *bbt* concept of an epoch is quite fluid, it still begs the question, “Is there any logic that can be applied to determine if and when there is an endpoint of those processes that could constitute an epoch?” At this stage in our studies, it seems that electroweak processes will be seen and understood as a continuing process rather than an epoch.

The big bang theorists have given two different starting point ranges. The first, based on time, is *between** 10 ^{−12} second *(Notations 104-107)

*and*

*10*(Notations 124 to 127 within the base-2 chart). Their range is Notations 104 to 127. Some of these same people say it will require an estimated temperature of 2×10

^{−6}second^{12}Kelvin to create the Quark-Gluon Plasma (QGP).

Others have it as high as 10^{15} K.

Using these estimates, this process could begin as early as notations 136 and 137. Note the temperature has quickly turned from superconducting cold at ‑135°C or -211° F (138 K) right around notation 102 to about 3,456,179,999,540.33° F (1.9201×10^{12} K) at notation 136.

If 10^{15} K, it would be between the 145 and 146 notations. The universe is less than ten seconds old, the mass of the universe is 3.883×10^{35} kilograms and it is substantially charged at 3.3461×10^{26 } Coulombs and it is all happening within an area defined by 1,791,660 miles. As a a point of comparison, the earth ranges from 91 to 93 million miles from the Sun. The moon is from 224,000 to 251,000 miles from the earth.

The big bang theorists postulate that it requires 175 MeV per particle (mega-electron-volt) to initiate the Quark-Gluon Plasma (QGP) and the Quark Epoch. Given all the data being generated within this model, there may be a way to figure it out. It is beyond us so we ask the experts, “How do we figure that out!?!” Note that within notations 136 and 137 the universe is less than one-hundredth of second from its start and at notation 145, it is 2.4 seconds.

The temperature scale within this model is an open question. The charge, length, mass and time were taken as given by Max Planck and render results that can be conceptually adjusted, even corrected, if there are logic errors.

*For the big bang theory* the Quark-Gluon Plasma (QGP) is the transition and transformational key and the first “stuff” of the universe. No earlier than Notation 104, and possibly as late as Notation 137, are the first manifestations of matter.

In the *Quiet Expansion*, the pure mathematics and geometries of Notations 1 to 66 become our first manifestations of matter within Notation 67. So, in our studies we will be looking for some kind of re-calibration process by which the QGP becomes part of notation 67, perhaps 66, and all notations adjust.

Within the *Quiet Expansion model*, spheres-geometries-ratios are the very first manifestations within the small scale universe (Notations 1-67). If we are to incorporate the speculations of the *bbt*, there is a magical transition between 67 and the quark-gluon plasma’s emergence. What is it? How is it best described? What is the finite-infinite relation?

We’ll be searching around within this cosmic soup, looking ahead at the Quark, Hadron, Lepton and Photon Epochs. Between the Photon and Hydrogen comes the cosmic Dark Ages, reionization comes much later. Then, what about aneutronic fusion? …the four or five forces of nature? …about the geometries of flavors, Up-Down, Top-Bottom, Strange-Charm? Might there be Brownian stochastic flavors?

Regarding the flavor problem, JoAnne Hewett, a theoretical physicist at the Stanford Linear Accelerator in Menlo Park, asks, “Why are there so many flavors? Why do we have six types of quarks and six types of leptons, and why do they have the different masses that they do? We don’t have a clue.”

So, let’s try to figure it out in our rather unorthodox way.

First, we defer to the posting about numbers and to the four processes that are being defined in the *Exponentiation, Expansion, and Inflation* post. Intentionally, the words associated with the particle flavors are used to describe the four basic processes of multiplication and division. Also, let it be noted that there is something exquisitely important about spontaneous symmetry breaking.

Now, it appears that we have the pieces of the puzzle but perhaps not a proper orientation to them.

**A look at the progression of ideation**.

Perhaps to understand the electroweak theory and its epoch will require going all the way back to 1687 when Sir Isaac Newton first postulated his theory that space and time are absolute. One can imagine that he could feel how both were infinite and unalterable and how both envelope all things everywhere within a perfect homogeneity. Obviously when it came to physical objects, he had a deep sense of empathy. His key concept is that space and time are independent aspects of objective reality. This point of view became commonsense logic for most of the world’s population. But, is it so? None of us should ever be satisfied with just one point of view. A fellow by the name of Gottfried Leibniz, a contemporary of Newton (and also an inventor of calculus), gives a very different point of view. Increasingly throughout the world today, there are many scientists and mathematicians who for many different reasons concur with the conclusions of Leibniz. Their work will become part of the final analysis of this posting.

If space and time are not absolute, but quantized, discrete and/or derivative, we have the beginnings of a fundamentally different perception of space and time. To see how that plays out, fast forward to 1967 at MIT where another natural philosopher and scientist, Stephen Weinberg, postulated his theory that there is a fundamental relation between electromagnetism and the nuclear weak forces, both beta-decay and kaon-decay. So compelled by his vision, Weinberg, just 34 years old at the time, wrote a landmark paper, *A Model of Leptons* (**PDF**). Phys. Rev. Lett. 19 (21): 1264–1266. It would be the first time in history that fundamental forces had been mathematically related and it would become one of the most-cited papers in all of high energy and particle physics.

**A truly small-scale universe**. Neither Newton nor Weinberg had any sense that there was a domain between the exquisitely small Planck base units and the fermion. In fairness to both, the Planck base units were not postulated until 1899 and it required the rich conceptual developments in mathematics and physics between 1687 and 1899 before Max Planck could begin to envision natural limits that define our universe. And, in a special deference to Weinberg, it wasn’t until 2001 that Frank Wilczek opened the door to begin to study Max Planck’s mysterious numbers. Most folks who knew a little about Planck’s base units considered them to be nothing more than Dirac-like numerology.

Then, it wasn’t until 2011 that the first base-2 path was cut through to the Planck Length. It would be December 2014 before another path was cut, this time to Planck Time. And then, in just a few months (February 2015), paths were cut for charge, mass and temperature. In April 2016 a horizontally-scrolled chart of the top-level numbers began to emerge so each could be more systemically analyzed. The charts are all known as the *Big Board-little universe*. As a cosmology, it is contrasted to the big bang; it gives order to the universe by using base-2 exponential notation from the Planck Time to the Age of the Universe; and, it is known as the *Quiet Expansion*.

The numbers are all a simple progression. Multiplication by 2 is nature’s ordering system. It is simple logic that creates an ordered relation for everything, everywhere, for all time throughout the universe. Our challenge is to tie the resulting numbers to actual realities. One of our first observations was that length and time seemed to track well together. In between the 143rd and 144th notation was one second and its time measurement was very close to the speed of light in a vacuum.

Obviously, the most simple observation is that the current time is always at the top of the chart. The beginning of creation is always at the bottom of the chart. It would seem anything prior to the current time is historical — it is the past. But, all of the notations above 67 appear to define things as we find them today.

**Key questions could be asked**: Why is time linear and asymmetric? Could it be be nonlinear and symmetric? Is it possible that nothing is past? If so, then might it be possible that everything and every notation is always present and what appears to be an historical record (the past) is actually an active imprint on the universe?

*That is a possibility that appears to be worth some time to consider.*