Engquist, Björn

Björn Engquist

The University of Texas at Austin
201 E. 24th Street, 1 University Station, Austin, Texas 78712-1229

ArXivNumerical methods for multiscale inverse problems (January 2014)
CV
Homepage
Twitter
Wikipedia
YouTube: Basis in Information Theory

References within this website:
https://81018.com/e8/#Björn
This page is https://81018.com/2019/04/18/engquist/

First email: 18 April 2019

Dear Prof. Dr. Björn Engquist:

Not being a scholar or expert, I am still fascinated with your work to define the development of absorbing boundary conditions.

We began our work in a high school geometry class where we were observing how an octahedron is in the center of a tetrahedron with half-sized tetrahedrons in each corner. Within the octahedron, there is a half-sized octahedron in each of the six corners and a tetrahedron in each of the eight faces all sharing the centerpoint.

We decided to do a Zeno-like progression and applied base-2 going back deeper and deeper inside. In 45 steps we were in the range of particle physics, and in another 67 steps we were in the range of Planck’s base units.

We then decided to multiply by 2 and in 90 steps we were in the range of the age and size of the universe.

For high school people, it was great fun. We encapsulated the universe in 202 steps. We only then found Kees Boeke’s work and began thinking of the differences between base-10 and base-2.

I suspect that you are one of the few people on earth who has thought very deeply about computational multi-scale methods. Might you advise us? Are we being illogical? Are we doing something wrong? Thank you.

Most sincerely,
Bruce

Links above:
https://81018.com/chart/
https://81018.com/home/
https://81018.com/tot/
https://81018.com

Current research:
https://people.maths.ox.ac.uk/trefethen/6all.pdf
https://www.encyclopediaofmath.org/index.php/Absorbing_boundary_conditions
https://math.mcgill.ca/gantumur/docs/down/Engquist77.pdf

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.