Zong, Chuanming

Chuanming Zong

Tianjin Center for Applied Mathematics (TCAM)
Tianjin, China

Articles: Mysteries in Packing Regular Tetrahedra (PDF)
• “The kissing number, blocking number and covering number of a convex body”, in Goodman, Pach, Pollack (eds.), Surveys on Discrete and Computational Geometry: Twenty Years Later (AMS-IMS-SIAM Joint Summer Research Conference, June 2006, Snowbird, Utah), Contemporary Mathematics, 453, Providence, RI: American Mathematical Society, pp. 529–548, doi:10.1090/conm/453/08812, 2008
ArXiv (19): On Lattice Coverings by Simplices, 2015 (PDF)
Award: 2015 AMS Levi L. Conant Prize
Books: Sphere packings, Springer, 1999
The Cube-A Window to Convex and Discrete Geometry, 2009
Homepage
Mathematics Genealogy Project
ResearchGate
Twitter
Wikipedia: Keller’s conjecture, H. F. Blichfeldt, Kissing Number

References within this website to your work:
May 26, 2020: https://81018.com/duped/#R3-2
May 5, 2020: https://81018.com/duped/#Aristotle
_______________ https://81018.com/duped/#1b
April 2020: https://81018.com/fqxi-aristotle/
March 2020: https://81018.com/imperfection/
October 2018: https://81018.com/realization6/
January 2016: https://81018.com/number/#En7

Third email: Wednesday, May 28, 2020

Dear Prof. Dr. Chuanming Zong:

First, let me congratulate you on your new location. Wonderful. It appears that you are still within 100 miles of Beijing. That’s excellent.

I am still quoting you after all these years (see above). Because the citations were getting so numerous, I created references page for you and Prof. J. Lagarias. My page for you: https://81018.com/2020/05/28/zong/

In these days and times, my most important conclusion is here about all our work, collectively and individually: https://81018.com/duped/#R3-2 Of course, if you would like anything changed, deleted, or added, I will be glad to accommodate your request.  Thank you.

Warm regards,

Bruce

Second email: Wednesday, January 8, 2014

Your paper is sensational.
It is exactly what I needed to be assured that Frank-Kaspers
and many others were not leading us astray. 

Your mathematics and analysis are spot on.

Let me share my reasons for my enthusiasm below this note to you. Thanks.

-Bruce

PS. Your work helps us with #2 and #4 below:

1.  The universe is mathematically very small.
Using  base-2 exponential notation from the Planck Length
to the Observable Universe, there are somewhere over 202.34
and under 205.11 notations, steps or doublings.  NASA’s Joe Kolecki
helped us with the first calculation and JP Luminet (Paris Observatory)
with the second. Our  work began in our high school geometry
classes when we started with a tetrahedron and divided the edges
by 2 finding the octahedron in the  middle  and four tetrahedrons
in each corner.  Then dividing the octahedron we found
the eight tetrahedron in each face and the six octahedron
in each corner.  We kept going inside until we found the Planck Length.
We then multiplied by 2 out to the Observable Universe.  Then it
was easy to standardize the measurements by just multiplying
the Planck Length by 2.  In 202 notations we go from the smallest to the largest possible measurements of a length.

2.  The very small scale universe is an amazingly complex place.
Assuming the Planck Length is a singularity of one vertex, we also
noted the expansion of vertices.  By the 60th notation, of course, there are
over a quintillion vertices and at 61st notation well over 3 quintillion more
vertices.  Yet, it must start most simply and here we believe the work
within cellular automaton and the principles of computational equivalence
could have a great impact. The mathematics of the most simple is being
done.  We also believe A.N. Whitehead’s point-free geometries should
have applicability. 

3.  This little universe is readily tiled by the simplest structures.

The universe can be simply and readily tiled with the four hexagonal plates
within the octahedron and by the tetrahedral-octahedral-tetrahedral chains.

4. And, the universe is delightfully imperfect.
In 1959, Frank/Kaspers discerned the 7.38 degree gap with a simple
construction of five tetrahedrons (seven vertices)  looking a lot like the Chrysler logo. We have several icosahedron models with its  20 tetrahedrons and call squishy geometry.  We also call it quantum geometry (in our high school). Perhaps here is the opening to randomness.

5. The Planck Length as the next big thing.
Within computational automata we might just find the early rules
that generate the infrastructures for things. The fermion and proton
do not show up until the 66th notation or doubling.

I could go on, but let’s see if these statements are interesting
to you in any sense of the word.  -BEC

 First email: Fri, Aug 30, 2013, 7:19 PM

Just a terrific job. A wonderful read.
Thank you.

Coming up on two years now, we still do not know what to do with a simple little construct: https://81018.com/2014/05/21/propaedeutics/

That five-tetrahedral construct plays a key role.

Your work gives me a wider and deeper perspective.

Thanks. 

Warmly,

Bruce

Georgi, Howard

GeorgiHoward Georgi

Mallinckrodt Professor of Physics
Harvard University
Leverett House, 28 DeWolfe St.
Cambridge, Massachusetts

Articles: Why Unify? (Nature, v.288, pages 649–651, 1980)
ArXiv (51): Unparticle Physics (May 2007) Wiki
Books: Lie Algebras In Particle Physics (Westview, 1999) (CRC Taylor & Francis, 2018) (PDF)
CV
Homepage
inSpire-HEP
LinkedIn
Twitter
Wikipedia: Unparticle Physics
YouTubeGUT

Most recent email: Tuesday, March 17, 2020 (Rewrite: 19 May 2016)

Dear Prof. Dr. Howard Georgi:

Your work on Unparticle Physics has finally come to my attention so my studies of your work are still quite young. I apologize in advance for my lack depth.

In and around 1979 John Wheeler sent me a copy of his booklet, The Frontiers of Time (PDF). Unfortunately, soon thereafter, I went back into a business that I had started nine years earlier.

I recently revisited Wheeler’s writings about quantum foam and simplicity. I would ask him today, “What about the Planck base units?” Might we consider Planck Time the first unit of time? Might we consider today, the Now, to be to be an endpoint that gives us the current estimated age of the universe between 13.81-to-14.1 billion years?

If we apply base-2 notation to that continuum, there are just 202 notations that encapsulate the universe. At one second (between Notation 143 and Notation 144) the Planck Length is within .001% of the distance light travels in a vacuum.

Throughout those 202 notations, there are many places to check the validity of the numbers, including the Planck Charge and Planck Mass doublings. There is a deep logic to it all. The first 64 notations are too small to be measured. The first doubling of the Planck Length that can be measured is within Notation-67. The first measurement of a unit of time that can be measured is the attosecond; it is within Notation-84.

Here is a domain, 1-64, for your unparticle physics, including Langlands programs, string theory, and loop quantum theory. If real, it has dimensionality and physicality that cannot be measured directly. Indirectly, it just may become part of the definition of dark energy and dark matter.

When we considered the look and feel of these unparticles, might an infinitesimal sphere at the Planck level be defined by the Fourier transform, Poincaré spheres, and cubic close packing of equal spheres? What are  our limitations within mathematics and physics?

All notations appear to be active, so time is surely redefined. It would appear that there is symmetry across all but the current notation.

I hope you will comment.  Thank you.

Most sincerely,

Bruce

PS. Another recent attempt to describe all this ideation was for FQXi (Aguirre and Tegmark group):  https://81018.com/3u/


Long, long ago… I was a member of Harvard SDS ’64 (local high school student – recruited from an all-night teach-in at Memorial Hall), also a member of the Harvard Philomorphs with Arthur Loeb and Bucky Fuller, 1970-1973, and one of nine (1977) with Arthur McGill (HDS) on Austin Farrer’s Finite and Infinite.


Barker, William H.

William H. Barker

Bowdoin College
Brunswick, Maine

Books:  Continuous Symmetry: From Euclid to Klein (AMA, 2007)

________ Harmonic Analysis on Reductive Groups

(NOTE: A conference on Harmonic Analysis on Reductive Groups was held at Bowdoin College in Brunswick, Maine from July 31 to August 11, 1989. The stated goal of the conference was to explore recent advances in harmonic analysis on both real and p-adic groups. It was the first conference since the AMS Summer Sym­posium on Harmonic Analysis on Homogeneous Spaces, held at Williamstown, Massachusetts in 1972, to cover local harmonic analysis on reductive groups in such detail and to such an extent. While the Williamstown conference was longer (three weeks) and somewhat broader (nilpotent groups, solvable groups, as well as semisimple and reductive groups), the structure and timeliness of the two meetings was remarkably similar. The program of the Bowdoin Conference consisted of two parts. First, there were six major lecture series, each consisting of several talks addressing those topics in harmonic analysis on real and p-adic groups which were the focus of intensive research during the previous decade. These lectures began at an introductory level and advanced to the current state of research. Sec­ond, there was a series of single lectures in which the speakers presented an overview of their latest research.

_____ Lp harmonic analysis on SL(2,R)

Homepage

Most recent email: Friday, 7 February 2020

Dear Prof. Dr. William H. Barker:

My work in 1972 focused on continuity, symmetry, and harmony. I was attempting to define what I thought would entail “a moment of perfection” within our quantum universe. By 1980, after working with an array of distinguished scholars in Boston, Cambridge (USA), and Paris, I went back to work within a business that I had started in 1971. From a little service bureau, we soon had a software business with well over 100 employees. My first opportunity to attempt to dig back into it all back was in 2011. I was helping a nephew with his high school geometry classes when we went inside the tetrahedron — https://81018.com/tot/ — and then its octahedron, step-by-step, deeper and deeper by dividing all the edges by 2 and connecting those new vertices. Within 45 steps we were within particle physics. In 67 additional steps, we were within the Planck scale. By multiplying those classroom objects by 2, in 90 steps we were out to the approximate age and size of the universe. Instead of base-10 like Kees Boeke (1957), we used base-2, we had an inherent geometry, and we went from the Planck units to the current time.

It was an unusual, albeit, rather idiosyncratic chart of 202 notations: https://81018.com/chart/

Prima facie, do you see any merit to such a chart?

I will continue my readings of your work, Continuous Symmetry: From Euclid to Klein (AMA, 2007) and Harmonic Analysis on Reductive Groups (Springer, 1991) in hopes that you might have some guiding thoughts for  this rather idiosyncratic chart of the universe.  Thank you.

Most sincerely,

Bruce

PS. In 1746 our family settled in Bremen, Maine. Bowdoin had always been on my list of schools to consider, but in 1965 the call for voter registration in the South won the day.  I always think of you all on my way out of Freeport and as we go through Brunswick. -BEC

First email: August 2, 2016 3:20 PM

Dear Prof. Dr. William H. Barker:

My grandmother lived up the road a ways (Bremen…Damariscotta, then out to 1A and the coast). Often Dad would stop at Valerie’s in Ogunquit, my sister’s favorite restaurant; they shared the name. We’d fall quickly back to sleep as children for the final long slog up from Cambridge. For some magic reason, I would awake just as we were passing by Bowdoin. Bathed in the soft summer lights, I would secretly dream, “That’ll be my school.”

1965 came quickly and I marched off to the south to register voters, but Bowdoin always held that special place.

Today, I am delighted to find your book on continuous symmetries and remember my childhood once more. Images imprint the soul and make us who we are.

When and why is there spontaneous symmetry breaking?
Have you given it much thought?

So, I have discovered your work and I am grateful to now be taking a de facto course with you through your writing. And so I say, “Thank you!”

With warm regards,
Most sincerely,

Bruce

________________

How does one find your work:  https://en.wikipedia.org/wiki/Continuous_symmetry
In mathematics, continuous symmetry is an intuitive idea corresponding to the concept of viewing some symmetries as motions, as opposed to discrete symmetry, e.g. reflection symmetry, which is invariant under a kind of flip from one state to another.

Formalization
The notion of continuous symmetry has largely and successfully been formalised in the mathematical notions of topological group, Lie group and group action. For most practical purposes continuous symmetry is modeled by a group action of a topological group.

One-parameter subgroups
The simplest motions follow a one-parameter subgroup of a Lie group, such as the Euclidean group of three-dimensional space. For example translation parallel to the x-axis by u units, as u varies, is a one-parameter group of motions. Rotation around the z-axis is also a one-parameter group.

Noether’s theorem
Continuous symmetry has a basic role in Noether’s theorem in theoretical physics, in the derivation of conservation laws from symmetry principles, specifically for continuous symmetries. The search for continuous symmetries only intensified with the further developments of quantum field theory.

See also:

References:  William H. Barker, Roger Howe, Continuous Symmetry: from Euclid to Klein (2007)


 

Lincoln, Don

Don Lincoln

Notre Dame Department of Physics, Notre Dame, Indiana
Fermi National Laboratory (FNL), Batavia, Illinois

Articles: Space.com Symmetry Magazine, Naturalness, 2013
ArXiv: Recent QCD Results
CV (pdf)
Homepage
Wikipedia
YouTubeWhat is supersymmetry?

Second email:  Thursday, August 15, 2019 @ 4:04 PM (updated)

Dear Dr. Don Lincoln:

Thank you for your video,
Why there is something, rather than nothing?”  (other viewpoints)
It really is the most timeless question in both science and philosophy.

That theory of leptogenesis needs testing so we are most interested
in learning the results of your FNAL’s reports!

Next up for us (for our viewing pleasure and learning):
The Deep Underground Neutrino Experiment:
Your video on The science of DUNE:
Global benefits of LBNF/DUNE:

We’ll be looking for your new videos here on DUNE:
https://www.fnal.gov/dune

Thanks again,

-Bruce

First email:  Thu, Dec 20, 2018 at 9:57 AM

Dear Prof. Dr. Don Lincoln:

Thank you for your work to explain the speed of light. For me,
it appears to be profoundly related to the four Planck base units.

Simple questions, yet not so simple answers:
1. Does Max Planck’s simple formula for Planck Time work:
Planck Time divided by c is equal to Planck Length? It appears to work
(See line 10).
2. Does it follow that Planck Length divided by Planck Time is equal to c ?
It also appears to work. It begs the questions, however, does it also work within an expansion of the four Planck base units using base-2? Here the simple calculation gives us a variable speed notation by notation.

We are still thinking about those preliminary calculations within line 10
of our horizontally-scrolled chart: https://81018.com/chart/

Is it just jabber, circular speak, or could the simple logic of these numbers
be trying to tell us something? Thank you.

Most sincerely,
Bruce

PS. That’s a two-hour drive between Fermi and Notre Dame. I suspect you know those roads very well!

Francis, Matthew R.

Matthew R. Francis

Key Articles:
• The Origins of Dark Matter (Symmetry, November 2018)
• The quest to test quantum entanglement (Symmetry, November 2018)
• Already beyond the Standard Model (Symmetry, October 2018)
• Five mysteries the Standard Model can’t explain (Symmetry, October 2018
• Will We Recognize Alien Life When We See It? (Mosaic / digg, October 2015)
• Quantum and Consciousness Often Mean Nonsense (Slate, May 2014)
CV
LinkedIn: http://linkedin.com/in/matthewrfrancis
Twitter:  @DrMRFrancis
Websites: http://bowlerhatscience.org/  (Personal Website)
http://bowlerhatscience.org/writing-portfolio/
http://GalileosPendulum.org   (Blog)

First email: 15 November 2018

Dear Prof. Dr. Matthew R. Francis,

Is simplicity good?

We took the Planck base units of Length, Time, Mass and Charge and
applied base-2 exponentiation. In 202 doublings, the chart is out to the
Age of the Universe. It seems straight forward, however, the results are
rather startling.

First, it is a simple, logical, mathematical map of the universe.
I am not sure… are there any others?

By studying the numbers associated with each doubling, we see
that most of the 202 doublings are about the early universe.
Notation 143 contains the first second.
Notation 197 contains the beginning of large structure-formation.
All the numbers are here: https://81018.com/chart/

Though entirely idiosyncratic, I think there is something here.

1. Of course, the Planck Length doubling at one second, divided
by the Planck Time doubling at one second is very close to the value
of the speed of light in a vacuum. It is consistent with Planck’s initial
equation for Planck Time. Yet, it is naturally also consistent within
each of the other 202 notations.

Thus, space-and-time appear to be derivative, quantized, and discrete.

2. There is a natural inflation that mimics the ΛCDM model.

3. All notations appear to be forever active and necessarily
interdependent and appears to define the Now for Richard Muller
and Carlo Rovelli.

We started this project in a high school geometry class in 2011
( https://81018.com/home/ ) with just the Planck Length. We
did not introduce Planck Time until 2014 and Planck Mass and
Planck Charge until 2015. So, really we have just begun to study
and attempt to understand these numbers in light of current theories
within cosmology and physics. It is entirely provocative!

Even though it is idiosyncratic, is there any hope for it?
The current homepage is my latest attempt to spotlight key ideas
and problems. Thank you.

Most sincerely,
Bruce

Ismael, Jenann

Jenann Ismael

Department of Philosophy
Columbia University
New York, NY


Articles: Passage, Flow, and the Logic of Temporal Perspectives

Books
CV
Homepage  (Columbia)
Wikipedia
YouTube

References within this website: https://81018.com/2016/06/30/perimeter/
See: Foundational Questions Institute (FQXi)

First email: 19 October 2018

Dear Prof. Dr. Jenann Ismael:

I started seeing references to you and your work regarding the structure of space and time. Then, came FQXi, then symmetry, Rovelli’s work, a conference about time at Perimeter… so I started to investigate. When I do, I create this little reference page along with a copy of my notes as I struggle to see how it all fits together.

Since December 2011 we have been studying an application of base-2 notation from the Planck base units to the age and size of the universe. We know well that it falls outside the normal work within physics-philosophy-mathematics today. But, such a simple concept renders rather unusual-even surprising results:
• There are just over 202 doublings. Our working numbers: https://81018.com/chart/
• Too small to measure, the first 64 notations: https://81018.com/64-notations/
• Does it address the derivative structure of space-time? https://81018.com/c/
• The doublings create a natural inflation: https://81018.com/ni/
• Perhaps it is just too simple. The first second emerges within the 143rd notation.
• The 202nd notation has a processing speed of 10.9816 billion years and I am not sure what it means to be just 2.8 billion years into it!

I thought you might find it all of interest. I don’t think it’s just poppycock… If it is, it seems we’ll have to re-examine the foundations of logic, mathematics, and integrity, and the concepts of continuity and symmetry!

On leave from Columbia, I hope your work is going very well and you are making very special progress. I would be delighted to hear from you either way,
poppy cock or not poppycock!

Thank you.

Sincerely,

Bruce

Barish, Barry C.

Barry Clark Barish
Linde Professor of Physics Emeritus

California Institute of Technology,  Pasadena, California
UC Riverside
Director of the Global Design Effort, International Linear Collider

ArXiv: Search for gravitational waves from a long-lived remnant of the binary neutron star merger GW170817 (October 2018)
CV
Homepage
Nobel Prize 2017
Twitter (Nobel Prize)
Wikipedia
YouTube

From 2physics.com: “5 Needed Breakthroughs”

  1. Understanding what is the dark energy in the universe? (We don’t even have a good idea here.)
  2. What is the dark matter? (This is the other big unknown, but at least we have some handles. We know it is non-baryonic and evidence points to either supersymmetric particles, or maybe axions. Perhaps it is neither.)
  3. What causes mass? (We have a very successful theory of particle physics, but the particles are massless. We need to understand the source of mass. The leading idea is that it is the Higgs mechanism, and we need to see if there is a Higgs particle or variant to make the next step. The Large Hadron Collider at CERN should answer this question.)
  4. Is the neutrino its own antiparticle? (This is a puzzle going back to Fermi and perhaps the next generation of experiments will resolve it by looking for neutrino-less double beta decay.)
  5. Is there ultimate unification of the forces of nature? (This is a long term intriguing simplification on our understanding of particles and fields, but present data does not support it. However, if there is a new symmetry in nature (supersymmetry) it could bring this unification.)
First email: 19 October 2018

Dear Prof. Dr. Barry C. Barish:

To begin to get a modest understanding of your work, I have started my own page of references, along with a copy of this note: https://81018.com/2018/10/15/barish/

I found your work through a webpage from March 07, 2007 listing your five needed breakthroughs (just above). Although you might re-prioritize that list today, it seems that most respectable scientists would still agree with you just as it is.

We have just begun to address some of those questions. Although we have no pedigree, since December 2011 we have been studying an application of base-2 notation from the Planck base units to the age and size of the universe.

Such a simple concept renders rather surprising results:
• There are just over 202 doublings. Our working numbers: https://81018.com/chart/
• Too small to measure, the first 64 notations: https://81018.com/64-notations/
• We ask: Can this be where the answers to your questions are?
• The notations create a natural inflation: https://81018.com/ni/
• The first second emerges within the 143rd notation.
• The 202nd notation is 10.9816 billion years so we are just 2.8 billion years into it.

I thought you might find it all of interest. I don’t think it’s just poppycock… If it is, it seems we’ll have to re-examine the foundations of logic, mathematics, and integrity, and the concepts of continuity and symmetry?

Thank you.

Sincerely,

Bruce

This homepage is called a “how-to” page…

CENTER FOR PERFECTION STUDIES: CONTINUITY  • SYMMETRY  • HARMONY   • USA • GOALS • 2018
HOMEPAGESJUST PRIOR|1|2|3 |4|5|6|PI|8|9|10|11|12|13|14|15|16|17|187|19|20|21|22|23|24|25|ORIGINAL
72 OF 202: GRID of EVERYTHING, EVERYWHERE FOR ALL TIME, NOT A THEORY OR VISION, JUST MATH.

Sphere to tetrahedron-octahedron couplet
Planckspheres, cubic-close packing, emergence†

The Emergence of the Universe

By Bruce Camber_  _*Inspiration for this page_ _And, Another Version of this homepage

This website is a study of a model of the universe based on an application of base-2 exponentiation (multiplying by 2 or doublings) that eventually encapsulates-and-relates everything, everywhere, for all time in just 202 notations. This model of the universe starts with Planck Length and Planck Time, the smallest possible measurements, and goes to the largest. It starts with the very first moment in time and goes to this very moment in time.

There has never been a mathematical model of the universe quite like it.

To get an intuitive sense of this model is difficult. Four sacred cows of science need to be reexamined; these are best summarized as continuity, symmetry, harmony and the finite-infinite relation. Continuity applies to the nature of time. Symmetries apply to the structure of space, focusing here particularly on the very small-scale. Harmony is a focus on the dynamics of perfection and imperfection whereby chaos, indeterminacy, creativity, free will and fluctuations all emerge. And, all three are the face of the finite-infinite relation. [1]

The dynamic image at the top of this article opens this analysis. The first sphere is the first instant of space and time with a very specific mass and charge. These numbers were all calculated by Max Planck in 1899 and have been studied in earnest since 2001 when Frank Wilczek wrote a three-part series, “Scaling Mt. Planck” for Physics Today. [2]  When he received his Nobel prize in 2004, these three articles took on the patina of authority.

The next step for scholarship was obvious, but everybody seems to be ignoring it.

The first moment of time is derivative, finite and discrete. Newton’s absolute space and time are sidelined to introduce a new scale of the universe that begins with Planck Length and Planck Time. The focus of that image, including the ellipsis (36 displayed), is the first emergence.” [3]

Seemingly out of nothing – no space, no time – it all starts with just one sphere, defined by the Planck base units and many dimensionless constants, that is followed by another sphere, then another and another…. For now, we’ll call these spheres, planckspheres. If these spheres could be observed — obviously much-much-too-fast-and-too-small to measure — perhaps this process might be described as a line or a string coming out of nowhere, literally defining space and time as it emerges. This is the beginning of time, and this first moment is still emerging, today, at this moment…. It is still creating space/time and the dynamics that are mass/energy (or charge). It is assumed that all four Planck units are inextricably interwoven throughout the 202 doublings [4] (or notations) that bring us to this very moment within this day.

In that light, our first principle is that our Universe begins and is sustained by the dynamics that are defined within Planck Length/Planck Time and Planck Mass/PlanckCharge. Given these are inextricably interwoven, one of our challenges is to loosen, then disentangle all the knots.

Be assured, this is not your daddy’s or your mommy’s sense of time. Here it is a rate of encoding and imprinting on a universe that has no past. It has no future. It is only right now. This instant. Everywhere, everything shares this same moment and this same infrastructure. [5] This first notation is always the same, yet it is always unique just like pi. Impenetrable, there is nothing smaller; and these spheres penetrate and sustain all things.

So, another principle is that time is not a measurement of duration but of processing speed.

Here is the operational nexus between the finite and the infinite. Here is the beginning of an integrated, mathematical model of the universe and a quiet expansion with a most-natural inflation. Here is our little universe displaying its deep-seated order; yet very quickly, it begins to reveal how disorder, chaos, uniqueness, and creativity emerge. [6] Those geometries are well-known and the dynamics within each manifestation are now being explored and will be discussed in subsequent homepages.

Doublings. In the second notation the most basic projective geometry begins to emerge and structure begins building on basic structures [7] that creates a logical continuum from the infinitesimally small scale structures right up to the 67th doubling where now things can, in some sense of the word, be measured by accelerators like CERN in Geneva, Switzerland.

One of the key purposes of this site is to chart a map that takes us right down into these assumed infinitesimal structures.

Academics and scholars have not adopted this model. Questions should be asked  first, about the jump or “quantum leap” from the CERN-scale to the Planck scale. 
To date, there appears to be no other attempt to define this exquisitely small space using a simple application of base-2 notation and a profound respect for the Planck base units. In this study Planck temperature is derivative of mass/charge; so to approach the Planck temperature value, it has been reverse ordered. Just for convenience, it is now started just one notation above the 202nd notation. The logic supporting such a positioning is still being formulated.

Can the deep nature of that “quantum leap” be calculated today using just the four Planck base units and doublings? Could the first doubling from Notation 1 to Notation 2 be the foundation for all doublings?  There are many different types and applications of doublings that have already been well-researched and defined. To learn a little about each, on one page within this site, these key types of doubling will be studied and further researched in light of the continuity equations from the first doubling to the 202nd doubling. [8] Hopefully period-doubling bifurcation, cellular division, double field theory and gauge-symmetry for T-duality-and-doubled geometry, and multiscale modeling and simulations will inform us.

What other kinds of doublings should be considered? The 64 doublings from the Planck scale to just under the CERN-scale (at the 67th doubling) have been well-enumerated through the study of geometric expansions, especially as outlined by the Wheat & Chessboard story. It begs the question, “Is there a logical progression by which numbers and geometries progress?” Does every kind of mathematics, geometry and logic build upon each other? [9]

Given recent scholarship within the studies of prime numbers, the question should also be asked, “What is the role of prime numbers in this expansion?” There are 45 prime numbers between notation 1 and 202; there are 19 primes from 1 and 67. Could each notation that is a prime open a path for more complex mathematics? That question is being pursued within the development of the following pages: https://81018.com/1-202 https://81018.com/a0 https://81018.com/a1 https://81018.com/a2

So, even as we study these possibilities, a simple stacking renders our first doubling and an infrastructure for all subsequent doublings. Our centerfold image at the top captures the dynamics of doublings. Cubic-close packing, both face-centered cubic (fcc) and hexagonal close-packed  (hcp), has a rich history beginning in-and-around the 1570s starting with the problem of stacking cannonballs on the deck of a ship. Today there are purely mathematical packing challenges as well as applications of atomic and crystallographic stacking and packing. By starting with planckspheres, this most-simple doubling application becomes discernible as the second,  third, and fourth doublings are assumed. Further, subsequent doublings are assumed right on up to 202nd doubling and the current time.  Yet, something unusual is captured within the 67th doubling, we begin to measure it. That length opens the possibilities of particle physics revealing the potential science of the first 64 steps. It begs the question; is this a logical continuum from the infinitesimally small scale structures up to those being measured by accelerators like CERN?

These planckspheres, a key element of the finite-infinite bridge, are defined by pi, the Planck base units, dimensionless constants and simple logic. Every finite-infinite discussion-and-debate should be re-examined. Though tedious,  it must be re-engaged.  There are too many fine scholars who are being torn up and their logic being shredded to not engage every idea that has been posited throughout human history. All of that is within the 202nd notation. The 197th notation takes us up to 343+ million years. Our first 196 notations open a deep study of the earliest cosmological epochs.

Could this model be in line with Neil Turok’s conclusions that the universe is in a perpetual state of starting? So, yes, I believe planckspheres and every form of emergence up to the 67th notation are keys.  https://81018.com/1-202

Many people have asked, Why now?

Of course, the question must also be asked, “Is this model overly simplistic and naive?”  Yet, even if so, could this model of the early universe be closer to the truth than the big bang theory? I believe it is. Thank you. -BEC 

###

_________________________________________

Endnotes and Footnotes:

(in process today, 29 June 2018)

[†]   This dynamic image was first introduced within this website on January 4, 2016 in an article about numbers, “Constructing the Universe from Scratch.” It has now become the center point within this analysis. In that initial article, the question was asked, “Which numbers come first and why? Which numbers are the most important to know and understand?” The image was also used within the following articles: Fabric of the Universe (November 20, 2017, just below point #4), Consider how symmetries within the first 67 notations actually create space (Sept. 17, 2017) and Symmetry: Circles-to-Spheres-to-Triangles-to-Tetrahedrons-to-Octahedrons (September 13, 2017.

[1]  The three faces of the finite-infinite relation extend our earlier discussions about David Hilbert’s understanding of infinity and Max Tegmark’s disdain for the word. Continuity-symmetry-harmony are the mathematical-scientific faces of infinity and each face is captured by the dynamics of pi and the emergence of lattice, tetrahedrons and octahedrons, and eventually complex structure.

[2]  Frank Wilczek wrote his three-part series, “Scaling Mt. Planck” for Physics Today, yet has not acknowledged that Planck base units are the best conceptual orientation to start constructing this universe. As a result of this analysis, we will ask him, “Why not?” To our knowledge, the writings within this website are the first to lift up Max Planck’s base units as the starting point for the universe. We are anxious to discover and understand any articles that analyze their place, power and conceptual richness.

[3]  “The first emergence” is a steady stream of planckspheres being uniquely created just like they were in the very first moment. Every notation has a unique function and every notation is evolving at the same time it continues to do what it has done. Here, perhaps are Neil Turok’s perpetual starts of the universe. Here everything, everywhere is built up and emergent from this fabric of the universe, called an aether and/or dark matter and dark energy, that gives this universe its isotropy and homogeneity.

[4]  The Planck base units and dimensionless constants are inextricably interwoven throughout the 202 doublings (or notations) are based on the “Plancksphere” and that analysis is just beginning. I googled the word, for example, on June 25, 2018 with those quotes and there are just nine results. Using two words, “Planck sphere” with the quotes, there are 320 results. And without the quotes there are just over four million combinations that come close. Such results suggest that this is a new or emergent science.

Within our dynamic image about sphere stacking, the tetrahedral-octahedral architecture begins to emerge. Here, the possibilities for getting things inextricably woven together become staggering. By the tenth doubling there are 134,217,728 scaling vertices with which to work. By the 20th notation it catapults to 1.4411519×1017 — there are no limits to the entanglement of strings and knots and yet-to-be-fathomed geometries to create. By the 64th notation those scaling vertices have jumped up to 6.2771017×1057  and the first particle has yet to emerge!

Unless this simple logic is mistaken, there is altogether too much potential to ignore these possibilities and this orientation any longer.

Also, it should be pointed out that Max Planck’s formula for light — you can see it on line 10 of the horizontally-scorlled chart of 202 notations is a special calculation that needs further study.  The fact that these doublings is a form of base-2 exponentiation suggests that our universe is not linear and just might best be defined by Euler’s identity, considered by many mathematicians and physicists to be the most beautiful of all equations.

[5]   Everywhere, everything for all time shares this same moment and this same infrastructure. There are many books and articles about the nature of time. Within this study, most have fallen short. Einstein and Planck opened the door to re-analyze Newton’s earlier conceptual frame of absolute space and time, yet nothing more compelling emerged. Newton continues to define our commonsense logic, but should it? If it is established that period-doubling bifurcation, cellular division, double field theory and doubled geometry, and multiscale modeling all share the same common denominator that starts at the Planck base units, absolute space and time can be placed on the historical shelf as a footnote within the imprinting on the sentience of this universe. More work needed…

[6]  Consider disorder, chaos, uniqueness, creativity and fluctuations. The scholarly community is increasingly confused with the terms, infinite, space and time.  David Hilbert’s simple analysis leaves much to be desired. The infinite can be understood as a logical construct where it is the foundation for continuity, symmetry and harmony. These three perfections should all be understood to be a scientific assertion about the nature of order, relations, and dynamics. The various manifestations of fluctuations can be experienced as disorder, chaos, uniqueness, creativity and human will. The geometry for fluctuations begins with the simple pentastar, a clustering of five tetrahedrons. The next base structure, the icosahedron, is a clustering of 20 tetrahedrons. The dynamics of each will be introduced within future homepages.

[7]  Structures begin building on basic structure.   There are two areas where our analysis is focused. The first is on a notation-by-notation analysis but progress is slow because there is so much mathematical logic to be learned. The other is basic geometries, quantum geometries and dynamic geometries.  Here, too, there is so much to learn and, of course, more to come

[8]  There can be strains of continuity within discontinuity. There can be strains of discontinuity within continuity.  The continuity equations from the first doubling to the 202nd doubling come from within a continuity that envelopes our physical universe, so here, too, there is more to come

[9]  There appears to be a rigorous academic study of the logical construction of concepts, geometries, and equations. Mathematics and geometries do build upon each other! These studies will become our studies and as quickly as possible, each will be integrated within our map of the universe. Yes, there is more to come


“In philosophy, systems theory, science, and art, emergence occurs when “the whole is greater than the sum of the parts,” meaning the whole has properties its parts do not have. These properties come about because of interactions among the parts.” -Wikipedia


This page was started on June 21, 2018 in South San Francisco while on our tour of America. On many occasions Hattie and I been challenged to look at the world and ourselves in new ways. Along our route, we’ve spent time engaging with people:

  • At John Hendrick’s retreat, Gateway Canyon Ranch, an hour south of Grand Junction, Colorado, we discovered his CuriosityStream retreat center. That got me thinking.
  • We were in the highly-overpriced Yellowstone Hotel in Wyoming where the National Park Service is attempting to create a Disney-like experience, highly-controlled-and-organized wilderness. That compressed conflict got me thinking.
  • On our drive to Bend, Oregon, I discovered the Simplot Don plant near Pocatello, Idaho and learned about fertilizers and growth and even that challenged my thinking.
  • In Bend, while visiting with friends, I was challenged again to understand why there is such disparity, both political and economic, within our world.
  • On to Portland, the land of inclusivity, two different sets of friends challenged me to see the world through their eyes. There is so much to process and process it we will until each becomes a homepage.

This homepage was simply to clarify the last three homepages:

Thanks again.

-BEC


The next homepage builds from this page and from those past homes pages linked just above, and from a page written on July 23, 2016 entitled, Chaos-Order, Indeterminant-Determinant.

Your Small Group For Controversial Discussions

The Nature of the Finite-Infinite Relation

December 2017 Update: April 2018 OVERVIEW  WORKSHOP Session #1  #2  #3 #4 #5 #6 #7 #8 #9  Summary
PLEASE NOTE: THIS IS An Introduction to A NINE-WEEK STUDY GROUP. For LINKS TO THE ALL Sessions, SEE BELOW.

Convener-Presenter:  This could be you.

Purpose of this group. To develop a special graciousness and openness about life and beliefs, this group is for the people who want to get along with believers and non-believers. Can we find a deeper truth that holds up some new insights that will embrace both sides of an equation by focusing on the nature of the relation. We’ll engage the edges of scientific research and its implications for our current theories about the universe and its origins, and about who we are and the meaning and value of life.

Overview: One of the best sources for a study of the relation between the finite and infinite are the sacred texts within our religious traditions.  Many of us who grew up in the Christian tradition and like typical college students, we tend to reject the old to begin to self-actualize.  Then we begin studying at the limits and boundaries of our knowledge and the challenges can become so daunting, they get left in those undergraduate and graduate classrooms. Personally I went out as far as I could on the edges of physics, working with Bob Cohen, then chairman of Boston University’s physics department, and then with physicists from around the world. I began discovering there are conceptual overlaps between all the departments within the university. The most extreme appeared to be those who were religious and those who demonized all religions.

What can be more different that the texts within The Bible, both Old Testament and the New Testament, and most texts within the scientific community, that is between Genesis 1 and John 1 and Stephen Hawking’s big bang theory.  These sessions are designed to examine concepts within the sciences, philosophy, ethics, and mathematics to see how and where these overlap with concepts about eternity, infinity, light, and love. We start with an integrated view of the universe, and that begins to inform our understanding of the infinite and infinity.

Structure: This small group will have just nine gatherings, no longer than 90 minutes each. A goal for these sessions is to chart a way to empower people to create such a small group study.
• The first two sessions. We will re-examine cosmological models of the universe (2 weeks).
• The 3rd and 4th sessions:  We will explore various ways of approaching an understanding of the finite-infinite relation.
• The 5th and 6th sessions: We will explore a rather different understanding of light, a light that permeates and defines every notation and all of space and time.
• The 7th and 8th sessions.  We will explore the challenges to our understanding of basic concepts like space and time.  Both become finite and transaction oriented.
• The final session: Beyond the summaries, we will be searching for answers to the question, “What do we do now?”

Simple and small goals:  The first goal is to open the door to a very simple orientation to science and faith that (1) works with science and mathematics and (2) allows for, and possibly informs, religious beliefs. The next goal is to explore the entry points between the finite and infinite. Another goal is to explore the physics, philosophy, and psychology of light. If we have even limited success, we’ll all begin to shrink space and time and open up an intimacy with the universe.

Resources to start your own Study Group:

Promo sample to paste on bulletin boards: Please Update the dates, locations and people.
Update: PDF to be printed back-to-back after updating. It creates four 4.25×5.5 inch handouts.
Introduction/Overview
Session 1Models of the Universe   Worksheet #1   S1a   S1b   S1c
Session 2: Models of the Universe
Session 3: Finite-Infinite: Continuity-Symmetry-Harmony
Session 4: Finite-Infinite: Order-Relations-Dynamics
Session 5: Light as defined by the Planck Length and Planck Time
Session 6: Light and time. Ten ways to reconsider the nature of time.
Session 7: Eight Key Ideas
Session 8: Planck Explains Einstein and Redefines Space-Time and Pi.
Session 9: “It’s a wrap.”
1. Always check the homepage of 81018.com
2. Check for any prior homepages you may have missed.
3. Add to the dialogue: Comment, like, Tweet, Link

UPDATES ON TIME & LOCATIONS


Finite-Infinite

Yellow ArrowCENTER FOR PERFECTION STUDIES: CONTINUITYSYMMETRYHARMONYGOALS • November 2017 Homepages: Langlands I Langlands II|INFINITY|Inflation|KEYS|Original|REVIEW|Transformation

DeepSpace

On More Fully Recognizing The Infinite

By Bruce Camber, first posted here on November 4, 2017

Précis: Whenever we look up into a clear night sky, often someone will say, “It goes on forever.” As children we learned to accept the infinitude of space and time. It is deeply ingrained within our thought structures. The problem is that this perception, in light of the base-2 exponentiation from the Planck units to the age and size of the universe, is probably not quite right.

History. Alchemist Isaac Newton was an experimenter and he made mistakes. He used trial and error. When he described space and time, I believe he was off the mark. Though a genius, he was overly sure of himself and was often arrogant and condescending. Perhaps his penultimate contribution to our universe of knowledge is his sense of space-time and the infinite. These lasting imprints, however, were only partially right.

Isaac Newton, Lucasian Professor at Cambridge University (1669). Wikipedia says: “He was a devout but unorthodox Christian, who privately rejected the doctrine of the Trinity and who, unusual for a member of the Cambridge faculty at that time, refused to take holy orders in the Church of England.” More (Wikipedia)…

Infinity: Newton was confused about the nature of infinity. And, his confusion became our confusion; and, it has become the world’s confusion. Infinity to this day remains a problem for many in the academic community because it is too often interlaced with theological and religious language. The God wars between the arrogant among religious thinkers have caused many intellectuals to avoid religious language. A possible resolution to that conundrum is to use those terms that describe the universals and constants that originate in mathematics and science. Those terms should capture facets, a certain essence, that is part of both the finite and the infinite.

Three Faces of Infinity. Though most of these studies on this website are of the finite, the infinite has a substantial, abiding and fundamental role. The infinite describes a never-ending, never-repeating perfection or completeness or a wholeness that is not fundamentally part of the finite. Within these studies the infinite is defined as continuity, that which creates order, sequences, and the nature of time. The infinite is symmetry, that which creates the foundations of relations, of balance and of the nature of space. And, the infinite is defined as harmony, that which creates dynamics, and creates a space-time moment. The use of religious or theological language and concepts is left to each reader.
.
These three simple postulations about form-and-function assume a panoply of necessary-and-abiding transformations. When we look into the clear night sky, we “see” only as far as today’s transformations within this expanding universe.
.
Set within the 202 base-2 notations from the Planck base units to this current moment, the Now, it challenges us to see how the entire universe is bound together within what is initially a most-simple mathematical and geometrical system that profoundly redefines space-and-time and our relation to the universe. In 2011 the first name of the project was “Big Board – little universe.” Those 202 steps, all active, make for a rather intimate place.

Our conclusion: “We live in a highly-integrated, exponential universe.”
.
The continuity-symmetry-harmony concepts were first written down in 1970-72 to define the three faces of a perfected state in space-and-time. Each seemed to hold plausible answers to deeper questions about life and to such practical things as superconductors, quantum fluctuations, heartbeats, sleep, consciousness, reproduction… but the articulation of those facets of the transformations was too weak and generalized. There was no systemic application or coherence until it was discovered that our entire universe is contained within those 202 base-2 notations. So profoundly and deeply integrated, this chart gave us our first introduction to the first 67 notations that provide the footings to explain the homogeneity and isotropy of the universe. Here was the story of the Chessboard and Wheat all over again.  There is so much space-and-time, every strain of mathematics will have its place within these first notations. There is enough room for consciousness, ethics, psychology and all other disciplines that have never had a place on a scientific grid.

This project opens new explorations. Certainly it re-awakens the finite-infinite relation, the nature of light, and the very nature of space-and-time. And, it thrusts enormous responsibility on each of us for our every thought, word and deed because it shows us how everything is related to everything and everything that we do impacts this little universe.

+++

Isaac Newton did not have the advantage of Leonhard Euler‘s exponentiation. Base-2, the most simple, still lacks proper respect. Newton did not have Planck’s base units. He was Lucasian Professor #2 and gave us our commonsense worldview: Absolute space and time.
https://81018.com/uni/
https://81018.com/ math/
https://81018.com/lucasian/
https://81018.com/malaise/
https://81018.com/arrogance/

***

For more, click back through the homepages or click here:

  • Two additional pages to be added: (1) the small scale universe and (2) the large scale universe
Small Scale
Speculations
Ideas
Concepts
and
Parameters

Boundaries
and
boundary
conditions

Trans-
forma-
tions

Human Scale

Numbers
and
Number
Theory
Forms:
Order
Relation
Dynamics
Functions
Continuity
Symmetry
Harmony

Large Scale

1
Planck Length
( ℓP )
Transition:
Small-to-Human Scale
1. Display area: Every number/word hyperlinked – quick results display here
2. Options: Open full screen, new tab or window to the research of the experts
3. Also: Related videos-images and online collaborations with up to nine visitors
4. Key Links81018.com  https://81018.com/bridges
Transition:
Human-to-Large Scale
205+
Observable Universe
2- 10
Forms1
Vertices:1024
77
Research
ℓP:2.44×10-12m
78
X-ray
Wavelength
95
Range:
Visible Light
96
Bacteria
Red Light
113
Hand-sizeH
16.78+cm
114
TextbookT
12.8+inches
131
Marathon
27+miles
132
54+ miles
87.99+km
204+
Observable
Universe
11-20
Structure-Ousia
V: 1+million
76
Gamma
Wavelength
79
Huang
Scale
94
Nanoparticles
100-10000+nm
97
Blood cellR
2.4+microns(µm)
112
Finger-size
3.3″(inches)
115
Things
67.134±cm
130
Race
21.998+km
133
Drive
108+miles
202-203+
Observable
Universe
21-30
Substances
V:1+ billion
75
Falstad
Scale
80
Periodic
Table
93
Gold LeafG
160.06±nm
98
Capillary
5.12+microns
111
Spoonful
4.19+cm
116
A child
52.86±in
129
Distances:
6.834+miles
134
Gravity-free
351.97+km
198-201
Superclusters

6.1-54+yottometers
31-40
Qualities
V:1+ trillion
74
Research
1.52+x10-13m
81
HydrogenH
31±pm
92
Nanowires
80.03±nm
99
Cells
10.24±microns
110
MakeupM
.82±inches
117
A bed
105.72±inches
128
Village
3.41±miles
135
Distance
437.41±miles
191-197
Virgo
Supercluster3
41-50
Relations
V:1+ quadrillion
73
Research:
Tunneling4
82
HydrogenH
78+ pm
91
Little chipslc
40.01+nm
100
Sperm
20.48+microns
109
LipstickL
1.04+centimeters
118
Bedroom
5.37+meters
127
Walk
1.7+miles
136
Fly
874+miles
181-190
Galactic
Group6
51-60
Systems
The MindM
72
NucleusN
7.63+x10-14m
83
CarbonC
70±pm2
90
Viruses
20.007+nm
101
HAIR
40+microns
108
DiamondD
5.2+mmM
119
Home
35.24+feet
126
Downtown
1.37+km
137
Rivers
2815.81+km
171-180
Milky
Way
61-65
Elementary
Particles
71
GoldAU
Nucleus

84
WATERW
3.12+x10-10m
89
Cell Wall
10+nm
102
Paper
81.95+microns
107
Ants
2.62+mm
120
Property
21.48+m
125
Superdome
687.45+m
138
USA-to-UK
3500+miles
161-170
SolarS
Interstellar
65-67
Neutron
Proton-Fermion
70
AluminumAl
1.90+x10-14m
85
DNAD
6.25+x10-10m
88
Insulin
5.00+x10-9m
103
EggE
.16+millimeters
106
Sand
1.31+mm
121
Yacht
142+feet
124
Skyscraper
343.7+meter+
139
EarthE
11,263+km
151-160
Solar
SystemS
68
HeliumHe
4.77+x10-15 m
69
Electron
9.54+x10-15m
86
Buckyballs
1.25+nm
87
Ribosomes
2.50+nm
104
>.< Period
.32+mm
105
Bacterium
.65+mm
122
Sequoia
85+meters
123
Tall Building
171.86+m
140
GPS Satellite
22526+km
141-150
Earth
Systems

Universe to  Milky Way to our Solar System to Earth to 500 East 4th St. #484, Austin, TX 78701

https://81018.com/2017/11/04/infinitude/