# The Large-Scale Universe

## Notation #167: 10,085,812.77 seconds or 116.73 days

Overview: This notation is now defining our universe within 10,085,812.77 seconds or 116.73 days of activity. Just under a third of the year, this is a pivotal transition point. The universe is beginning to emerge out of a density range that appears to include today’s neutron star.

Editor’s note: We are still struggling within these numbers and probably will for a very long time to come.

167th doubling of the Planck Time: 10,085,812.77 seconds Planck Time has now doubled 167 times. A quick conversion to days brings us close to the distance light travels in a year. Yes, the light year is between notations 168 and 169.

167th doubling of the Planck Length: 30.234609×1015 kilometers The Planck Length doubling is now 3.0234609×1015 meters or 3,023,460,900,000 kilometers or 3.0234 trillion kilometers (1,878,691,504,115.963 miles). The diameter of our sun is 9.461×1012 kilometers or just 1.392 million kilometers. The Solar System is possibly as small as 4.503 billion kilometers across, but some argue over 23 billion kilometers. A light year is 9,500,000,000,000 kilometers (9.5 trillion). Proxima Centauri, the closest star to our own, is only 40 trillion kilometers (4.3 light-years) from our sun. And, it appears that the entire Milky Way galaxy is estimated to be 1 quadrillion kilometers across.

167th doubling of the Planck Mass: 4.071×1041 kilograms The Planck mass multiple is off the charts at 4.071×1041 kilograms. We have begun to compare and contrast it to OJ 287, a BL Lac object located 3.5 billion light-years away with a mass of 18 billion times the mass of our sun (1.989×1030 kilograms).

167th doubling of the Planck Charge: 3.508×1032 Coulombs This simple calculation is for the total charge in the universe within the 167 notation.

167th reverse-ordered doubling of the Planck Temperature: 4.123×1021 Kelvin. Within the big bang theory, the projected temperature is 109 Kelvin. One might assume that is per meters cubed. We will take the calculation for size, 30.234609×1015 kilometers, and figure out what the temperature range could be with a goal to determine when the photon epoch and nucleosynthesis processes begin.