a little spacetime bibliography

spacetime is doomed


1. Arkani-Hamed, N., & Trnka, J. (2014). The Amplituhedron. Journal of High Energy Physics (10):30.Google Scholar
2. Balasubramanian, V., Kraus, P., Lawrence, A., & Trivedi, S. (1999). Holographic probes of anti–de sitter spacetimes. Physical Review D, 59(10), 104021.ADSMathSciNetCrossRefGoogle Scholar
3. Balasubramanian, V. Per Kraus Spacetime and the holographic renormalization group. Physical Review Letters 83(18).Google Scholar
4. Banks, T. (1998). The State of matrix theory. Nuclear Physics B-Proceedings Supplements, 62(1), 341–347.ADSMathSciNetCrossRefzbMATHGoogle Scholar
5. Banks, T, Fischler, W, Shenker, S. H., & Susskind, L. (1997). M theory as a matrix model: a conjecture. Physical Review D, 55(8), .ADSMathSciNetCrossRefzbMATHGoogle Scholar
6. Barbour, J. B. (2001). The end of time: the next revolution in physics. New York: Oxford University Press.Google Scholar
7. Bern, Z., Dixon, L. J., Dunbar, D. C., & Kosower, D. A. (1995). Fusing gauge theory tree amplitudes into loop amplitudes. Nuclear Physics B, 435(1), 59–101.ADSCrossRefGoogle Scholar
8. Bohm, D., & Hiley, B. J. (1995). The undivided universe: an ontological interpretation of quantum theory. Reprint. London: Routledge.zbMATHGoogle Scholar
9. Bombelli, L., Lee, J., Meyer, D., & Sorkin, R. D. (1987). Space-Time as a causal set. Physical Review Letters, 59(5), 521–524.ADSMathSciNetCrossRefGoogle Scholar
10. Dowker, F. (2005). Causal sets and the deep structure of spacetime. In A. Ashtekar (Ed.) One hundred years of relativity (pp. 445–64). Hackensack, N.J: World Scientific.Google Scholar
11. Finkelstein, D. R. (1969). Space-Time code. Physical Review, 184(5), 1261–1271.ADSMathSciNetCrossRefzbMATHGoogle Scholar
12. Fletcher, N. H. (1993). Nonlinear dynamics and chaos in musical instruments. In Green, D. G., BOssomaier, T. (Eds.) Complex systems: from biology to computation (pp. 106–117). Amsterdam: IOS Press.Google Scholar
13. Hamma, A., & Markopoulou, F. (2011). Background-independent condensed matter models for quantum gravity. New Journal of Physics, 13(9), 095006.ADSCrossRefGoogle Scholar
14. Heemskerk, I., Penedones, J., Polchinski, J., & Sully, J. (2009). Holography from conformal field theory. Journal of High Energy Physics, 2009(10), 079.ADSMathSciNetCrossRefGoogle Scholar
15. Heller, M., & Sasin, W. (1998). Einstein-Podolski-Rosen experiment from noncommutative quantum gravity. AIP Conference Proceedings, 453, 234–241.ADSCrossRefzbMATHGoogle Scholar
16. Heller, M., Sasin, W. (1999). Nonlocal phenomena from noncommutative pre-planckian regime. arXiv.org, 17 Jun 1999.Google Scholar
17. Henson, J. (2009). The causal set approach to quantum gravity. In D. Oriti (Ed.) Approaches to quantum gravity: toward a new understanding of space, time and matter (pp. 393–413). New York: Cambridge University Pres.Google Scholar
18. Konopka, T., Markopoulou, F., Severini, S. (2008). Quantum graphity: a model of emergent locality. Physical Review D 77(10).Google Scholar
19. Loll, R., Ambjørn, J., Jurkiewicz, J. (2006). The universe from scratch. Contemporary Physics 47(2).Google Scholar
20. Martinec, E. J. (2013). Evolving notions of geometry in string theory. Foundations of Physics, 43(1), 156–173.ADSMathSciNetCrossRefzbMATHGoogle Scholar
21. Misner, C. W., Kip, S. (1973). Thorne, and John Archibald wheeler. In Gravitation, 1st edn. San Francisco: W. H. Freeman.Google Scholar
22. Musser, G. S., Jr. (2008). The complete idiot’s guide to string theory. New York: Penguin Group.Google Scholar
23. Nishioka, T., Ryu, S., & Takayanagi, T. (2009). Holographic entanglement entropy: an overview. Journal of Physics a: Mathematical and Theoretical, 42(50), 504008.MathSciNetCrossRefzbMATHGoogle Scholar
24. Penrose, R. (2005). The road to reality: A complete guide to the laws of the universe‎. London: Jonathan Cape.zbMATHGoogle Scholar
25. Pettit, P. (1996). The Common mind: An essay on psychology, society, and politics. New York: Oxford University Press.CrossRefGoogle Scholar
26. Riemann, G. (1873). On the hypotheses which lie at the bases of geometry. Nature, 8(1), 36–37.Google Scholar
27. Stanley, H. E., Amaral, L. A. N., Gopikrishnan, P., Ivanov, P Ch., Keitt, T. H., & Plerou, V. (2000). Scale invariance and universality: organizing principles in complex systems. Physica A: Statistical Mechanics and Its Applications, 281(1), 60–68.ADSCrossRefGoogle Scholar
28. Susskind, L., & Witten, E. (1998). The holographic bound in anti-de sitter space.arXiv.org, May 19, 1998.Google Scholar
29. Swingle, B. (2012). Constructing holographic spacetimes using entanglement renormalization. arXiv.org, September 14, 2012.Google Scholar
30. Van Raamsdonk, M. (2010). Building up spacetime with quantum entanglement. In General Relativity and Gravitation 42(10):Google Scholar

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.