HUMAN SCALE 
101. Range: Human Hair 
40.9755356 microns 
___ 
Around 40 microns 
101. Thicker Hair 
HUMAN SCALE 
BIOLOGY 
100. Sperm cell diameter 
20.4877678 microns 

81.9510712 microns 
102. Thickness of paper 
MANUFACTURING 
Cytology 
99. Diameter of average human body cells 
10.2438839 microns
or 1.02438839×10^{5}m 

.163902142 millimeters
or 1.63902142×10^{4}m 
103. Egg cell diameter 
___ 
Microbiology 
98. Diameter of average human capillary 
5.12194196 microns or
about .0002 inches 

.327804284 millimeters 
104. This period. Got it? 
___ 

97. Red blood cells~2.4 µm 
2.56097098 microns (µm) 

.655608568 millimeters 
105. Large bacterium 
Bacteriology 
Bacteriology 
96. Rather small bacteria and red light (1.28 µm) 
1.28048549 microns or 1.2804854×10^{6} m 

1.31121714 millimeters or 1.3112171×10^{3}m 
106. Large grain of sand 
___ 
Nanotechnology 
95. Range of visible light ~ 400 to 1000 nm 
640.242744 nanometers 

2.62243428 millimeters 
107. A small ant 
Myrmecology 
___ 
94. Nanoparticles ~ 10000 to 100 nm 
320.121372 nanometers 

5.24486856 millimeters (around a quarter inch) 
108. Very small objects that we can still handle 
PHYSICS 
___ 
93. Thickness of gold leaf ~125 nm 
160.060686 nanometers 

1.04897 centimeters or 1.04897375×10^{2}m 
109. Often parts of common small objects 
CHEMISTRY 
___ 
92. Nanowires 
80.0303432 nanometers 

2.09794742 centimeters 
110. Rather small things 
ELECTRONICS 
___ 
91. Semiconductor chip 
40.0151716 nanometers 

4.19589484 centimeters 
111. A spoonful 
TECHNOLOGY 
Virology 
90. Virus range 
20.0075858 nanometers 

8.39178968 centimeters 
112. Anything 3.3 inches! 
BIOLOGY 
___ 
89. Thickness of a cell wall is around 10 nm 
1.00037929×10^{8} meters or 10 nanometers 

16.7835794 centimeters or 1.67835794×10^{1}m 
113: Small living and manufactured things 
ZOOLOGY 
Immunology 
88. Insulin molecule 
5.00189644×10^{–}^{9} meters 

33.5671588 centimeters 
114. Objects we handle 
BOTANY 
___ 
87. DNA helix ±2 nm 
2.50094822 nanometers 

67.1343176 centimeters or 19.68 inches 
115. Agricultural and manufactured things 
ANTHROPOLOGY 
Chemistry 
86. Glucose molecule Fullerenes diameter (Buckyballs) range: ~1.1nm 
1.25474112 nanometers 

1.3426864 meters or 52.86 inches 
116. A child or other smaller animals 
SLEEP & VISIONS 
Genetics 
85. Distance between base pairs within DNA ±340 pm 
.625237056 nanometers or 6.25237056×10^{10} meters 

2.6853728 meters or 105.723 inches 
117. A bed, a little stable or place to rest 
INSIGHTS & IDEAS 
HUMAN SCALE
PN 67 to 134 
84. Periodic Table is complete. Diameter of a water molecule ±280 pm 
.312618528 nanometers or 3.12618528×10^{10} meters 

5.3707456 meters 
118. A small bedroom 
PSYCHOLOGY 
Picometres
pm 
83. Diameter of a carbon atom ±70 pm 
.156309264 nanometers or 1.56309264×10^{10}m 

10.7414912 meters, 35.2411 feet 
119. A home, a small barn or shop 
SOCIOLOGY 
___ 
82. Helium atom diameter 
7.81546348×10^{11} meters 
. 
21.4829824 meters 
120. Property 
FAMILIES 
___ 
81. Hydrogen atom ±25 pm 
3.90773174×10^{11} meters 

42.9659648 meters 
121. Larger properties 
RETAIL 
___ 
80. Periodic Table of Elements begins 
1.95386587×10^{11}m 

85.9319296 meters 
122. Complex systems 
CONSTRUCTION 
___ 
79. Use Huang scale 
9.76932936×10^{12}m 

171.86386 meters or about 563 feet 
123. Big buildings or a little neighborhood 
GEOLOGY 
___ 
78. Wavelength of an Xray 
4.88466468×10^{12}m 

343.72772 meters or about 1128 feet 
124. A huge complex or a neighborhood 
ARCHITECTURE 
___ 
77. 
2.44233234×10^{12} m 

687.455439 meters 
125. Farms and large complexes 
AGRICULTURE 
___ 
76. Gamma wavelength 
1.22116617×10^{12}m 

1.37491087 kilometers 
126. Very small towns 
SMALL POLITICAL SYSTEMS 
BEGINNINGS OF 
75. Use Falstad scale 
6.10583084×10^{13}m 

2.74982174 kilometers 
127. Smallest states 
TRANSPORTATION 
SMALL SCALE 
74. ___ 
3.05291542×10^{13}m 

5.49964348 kilometers 
128. Towns 
AERONAUTICS 

73.___ 
1.52645771×10^{13}m 

10.999287 kilometers or within 6.83464 miles 
129. Small cities, or large towns 
JUDICIAL SYSTEMS 
NUCLEAR PHYSICS 
72. Average range of the size of atom’s nucleus 
7.63228856×10^{14}m 

21.998574 kilometers 
130. Large towns 
LOCAL POLITICS 
___ 
71. Gold atomic nucleus 
3.81614428×10^{14} m 

43.997148 kilometers 
131. Large cities 
___ 
Human Scale 
70. Aluminum atom 
1.90807214×10^{14}m 

87.994296 kilometers 
132. Small states 
___ 
Beginnings of 
69. Electron diameter 
9.54036072×10^{15}m 

175.988592 kilometers or 108 miles 
133. Very small countries or anything within 100 miles 
NATIONAL POLITICS 
Going up 
68. Helium atom diameter 
4.77018036×10^{15} m 

351.977184 kilometers or 218 miles 
134. Within the orbital range: International Space Station 
SPACE POLITICS 
Femtometres (fm) 
67. Neutron diameter Hydrogen – 1.75±×10^{15}m 
2.38509018×10^{15}m 

703.954368 kilometers 
135. Countries 
BEGINNINGS OF 
Going down, beginnings of 
66. Diameter of a proton or fermions (femtometre ) 
1.19254509×10^{15}m 

1407.90874 kilometers or about 874 miles 
136. Larger countries 
LARGE SCALE 
small scale 
65. 36+ quintillion vertices 
5.96272544×10^{16} m 

2815.81748 kilometers 
137. Regions of earth 
___ 
THEORETICAL
PHYSICS 
64. Neutrinos, quarks 
2.98136272×10^{16}m 

5631.63496 kilometers 
138. Largest countries 
___ 
Attometers 
63. ___ 
1.49068136×10^{16}m 

11,263.2699 kilometers or about 7000 miles 
139. Diameter of the earth 
___ 
am 
62. ___ 
7.45340678×10^{17}m 

22,526.5398 kilometers 
140. GPS Satellite Altitude 
___ 

61. ___ 
3.72670339×10^{17}m 

45,053.079 kilometers 
141. ___ 
___ 
VERYSMALL 
60. 1+ quintillion vertices 
1.86335169×10^{17}m 

90,106.158 kilometers 
142. ___ 
___ 
SCALE UNIVERSE 
59. Quarks 
9.31675848×10^{18}m 

180,212.316 kilometers (over 111,979 miles) 
143. ___ 
___ 
PN 40to60 
58. ___ 
4.65837924×10^{18}m 

360,424.632 kilometers 
144. Distance: Earth to Moon 
___ 
___ 
57. ___ 
2.32918962×10^{18}m 

720,849.264 kilometers 
145. ___ 
___ 
___ 
56. ___ 
1.16459481×10^{18}m 

1,441,698.55 kilometers 
146. Diameter of the sun 
___ 
Zeptometers 
55. ___ 
5.82297404×10^{–}^{19}m 

2,883,397.1 kilometers 
147. ___ 
___ 
zm 
54. ___ 
2.91148702×10^{19}m 

5,766,794.2 kilometers 
148. ___ 
___ 
___ 
53. ___ 
1.45574351×10^{19}m 

11,533,588.4 kilometers 
149. ___ 
___ 
___ 
52. ___ 
7.27871756×10^{20}m 

23,067,176.8 kilometers 
150. ___ 
___ 
___ 
51. ___ 
3.63935878×10^{20}m 

46,134,353.6 kilometers 
151. ___ 
___ 
___ 
50. 1+ quadrillion vertices 
1.81967939×10^{20}m 

92,268,707.1 kilometers 
152. ___ 
PN 134to201+ 
___ 
49. ___ 
9.09839696×10^{21}m 

184,537,414 kilometers 
153. Range: Earth to Sun 
ASTRONOMY 
___ 
48. ___ 
4.54919848×10^{21}m 

369,074,829 kilometers 
154. To go to Ceres asteroid 
___ 
___ 
47. ___ 
2.27459924×10^{21}m 

738,149,657 kilometers 
155. Range: JupitertoSun 
___ 
___ 
46. Pati Preons 
1.13729962×10^{21}m 

1.47629931×10^{12}m 
156. Range: SaturntoSun 
ASTROPHYSICS 
Yoctometers 
45. ___ 
5.68649812×10^{–}^{22}m 

2.95259863×10^{12}m 
157.Range: UranustoSun 
Terametres (Tm) 
ym 
44. ___ 
2.84324906×10^{22}m 

5.90519726×10^{12}m 
158. Range: PlutotoSun 
LARGE SCALE 
___ 
43. ___ 
1.42162453×10^{22}m 

1.18103945×10^{13}m 
159. ___ 
UNIVERSE 
___ 
42. ___ 
7.10812264×10^{23}m 

2.36207882×10^{13}m 
160. 24 hour light travel 
___ 
___ 
41. THE CHALLENGE: 
3.55406132×10^{23}m 

4.72415764×10^{13}m 
161. ___ 
___ 
VERYVERY, 
40. 1+ trillion vertices 
1.77703066×10^{23}m 

9.44831528×10^{13}m 
162. ___ 
___ 
SMALLSCALE 
39. 549 billion vertices 
8.88515328×10^{24}m 

1.88966306×10^{14}m 
163. 7day light travel 
___ 
UNIVERSE 
38. 274 billion vertices 
4.44257664×10^{24}m 

3.77932612×10^{14}m 
164. ___ 
___ 
PN 20to40 
37. 137 billion vertices 
2.22128832×10^{24}m 

7.55865224×10^{14}m 
165. ___ 
___ 

36. 68 billion vertices 
1.11064416×10^{24}m 

1.5117305×10^{15}m 
166. ___ 
Petametres (Pm) 

35. 34 billion vertices 
5.5532208×10^{25}m 

3.0234609×10^{15}m 
167. ___ 
___ 
SPECULATIONS: 
34. 17,179,869,184 
2.7766104×10^{25}m 

6.0469218×10^{15}m 
168. ___ 

Quantum State 
33. 8,589,934,592 
1.3883052×10^{25}m 

1.20938436×10^{16}m 
169. Beyond one light year (ly) (9.4×10^{15}) 
1 parsec ~ 31 trillion km or 19 trillion miles 
Machines (QSM) 
32. 4,294,967,296 
6.94152599×10^{26}m 

2.41876872×10^{16}m 
170. Go to Proxima Centauri (39.9 Pm) 
1 parsec (3.26 light years, 30.8 Pm) 
(QSM) 
31. 2,147,483,648 
3.47076299×10^{26} m 

4.83753744×10^{16}m 
171. Distance to Alpha Centauri A & B (41 Pm) 
___ 
___ 
30. 1+ billion vertices 
1.735381494×10^{26} m 

9.67507488×10^{16}m 
172. Distance to Sirius (81 Pm, 8.6 ly) 
___ 
Modulus for 
29. 536,870,912 
8.67690749×10^{27} m 

1.93501504 ×10^{17}m 
173. Distance to Tau Ceti (110 Pm) 
100 Petametres or 11 light years (ly) 
transformations (Mt) 
28. 268,435,456 b2v 
4.3384537×10^{27}m 

3.87002996×10^{17}m 
174. Diameter of Orion Nebula (350 Pm) 
___ 

27. 134,217,728 b2v 
2.16922687×10^{27}m 

7.74005992 ×10^{17}m 
175. Distance to Regulus star (730 Pm) 
___ 
Mt 
26. 67,108,864 b2v 
1.0846134×10^{27}m 

1.54801198×10^{18}m 
176. Omega Centauri diameter (1.6 Em) 
Exametre (Em): 110 light years (ly) 
___ 
25. 33,554,432 b2v 
5.42306718×10^{28} m 

3.09602396×10^{18}m 
177. Thickness of our Milky Way (2 Em) 
Our Galaxy 
___ 
24. 16,777,216 b2 vertices 
2.711533591×10^{28}m 

6.19204792×10^{18}m 
178. Distance to Helix Nebula (6.2 Em) 
___ 
___ 
23. 8,388,608 b2 vertices 
1.35576679×10^{28}m
1 barn 

1.23840958×10^{19}m 
179. Distance to the Orion Nebula (13 Em) 
12.38 Em 
QSM 
22. 4,194,304 b2 vertices 
6.77883397×10^{29}m 

2.47681916×10^{19}m 
180. Horsehead Nebula (15 Em) 
___ 
___ 
21. 2,097,152 b2 vertices 
3.38941698×10^{29}m 

4.95363832×10^{19}m 
181. ___ 
___ 
EXTREMELY 
20. 1+ quintillion b8 vertices 
1.69470849×10^{29}m 

9.90727664×10^{19}m 
182. ___ 
___ 
SMALLSCALE 
19. 524,288 vertices 
8.47354247×10^{30}m 

1.981455338×10^{20}m 
183. Small Megellanic Cloud diameter in Milky Way (150 Em) 
198.1 Exametres 
UNIVERSE 
18. 262,144 b2 vertices 
4.2367712×10^{30}m 

3.96291068×10^{20}m 
184. To the center of our galaxy (260 Em) 
___ 
PN 10to20 
17. 281+ trillion b8 vertices 
2.11838561×10^{30}m 

7.92582136×10^{20}m 
185. ___ 
___ 

16. one square femtometer 
1.05919280×10^{30}m 

1.58516432×109^{21}m 
186. Go to Large Magellanic Cloud 
1.5 Zettametre: 150,000 ly 

15. 32,768 base2 vertices 
5.29596404×10^{31}m 

3.17032864×10^{21}m 
187. Small Magellanic Cloud (2 Zm) 
3 Zettametres: 310,000 ly 

14. 4+ trillion base8 v 
2.64798202×10^{31}m 

6.34065727×10^{21}m 
188. ___ 
___ 

13. 8192 vertices 
1.32399101×10^{31}m 

1.26813145×10^{22}m 
189. ___ 
___ 
Note: ThetaFushian functions 
12. 68+ billion base8 v 
6.6199550×10^{32}m 

2.53626284×10^{22}m 
190. Distance to the Andromeda Galaxy 
24 Zm 
See: Models 
11. 2048 base2 vertices 
3.30997752×10^{32}m 

5.07252568×10^{22}m 
191. ___ 
___ 
SMALLESTSCALE
UNIVERSE 
10. 1+ billion base8 v 
1.65498876×10^{32}m 

1.01450514×10^{23}m 
192. (Fill in a blank) 
101 Zettametres 
Cubicities 
9. 512 base2 vertices 
8.27494384×10^{33}m 

2.02901033×10^{23}m 
193. Go to Centaurus A Galaxy (140 Zm) 
___ 
Primary QSM 
8. 16+ million base8 v 
4.1374719232×10^{33}m 

4.05802056×10^{23}m 
194. (Fill in a blank) 
___ 
Primary Mt 
7. 128 base2 vertices 
2.0687359616×10^{33}m 

8.11604112×10^{23}m 
195. ___ 
___ 
Nested Geometries 
6. 262,144 base8 v 
1.03436798×10^{33}m 

1.62320822×10^{24}m 
196. ___ 
Yottametre (Ym) 
Primary cubicities 
5. 32 base2 vertices 
5.17183990×10^{34}m 

3.24641644×10^{24}m 
197. Length of the Great Wall (4.7 Ym) 
___ 
Strings & Knots 
4. 4096 base8 vertices 
2.58591995×10^{34}m 

6.49283305×10^{24}m 
198. Distance (6.1 Ym) to Shapley Supercluster 
___ 
Primary knots 
3. 8 base2 vertices 
1.29295997×10^{34}m 

1.29856658×10^{25}m 
199. Length of Sloan Great Wall (13.7 Ym) 
12.98 Ym 
Cubicity or string 
2. 64 base8 vertices (v) 
6.46479988×10^{35} 

2.59713316×10^{25}m 
200.___ 
___ 
Primary String 
1. 2 base2 vertices (v) 
3.23239994×10^{35} 

5.19426632×10^{25}m 
201.___ 
___ 
The Planck Length 
A vertex? 
1.616199(97)x10^{35}m 

1.03885326×10^{26}m 
202. EOU at 202.34 
___ 

Synopsis: This Big Boardlittle universe is to order data in a way to open a discussion about our basic assumptions — the universals and constants — that guide our thinking and work. An initial focus is Max Planck’s calculation in 1900 of the Planck Length.
Very Brief History: The work began by attempting to find new starting points for creative thinking, new insights, even breakthroughs, regarding the very nature of space and time. In the 1970s the following first principles were formulated as preconditions for a spacetime moment at the zeropoint defined by Planck, Stern and Einstein.
First principles: Deep within the fabric of life there is an energy, an abiding thrust to make things better, more perfect. That is the cornerstone of business, but much more. Simple logic tells us that there are three forms within functions that define an increasingly perfected state within an experience:
1. The first form that defines our humanity is order and its most basic function, a simple perfection, creates continuity.
2. The second form is a relation and its function creates symmetry.
3. The third form is dynamics and its perfection, a complex function, is harmony.
These three — continuity, symmetry and harmony — just might be the precursors of a spacetime moment. 

A Working Project:
A Big Board of
our little universe
This work is copyright
by three groups,
all of River Ridge,
PO Box 10132
New Orleans,
LA 70123 USA 

Illustration 3.
Pentakis dodecahedron
32 external vertices
or points, 60 external tetrahedra, a layer
of 46 asymmetrical
tetrahedral and
an icosahedron in the center.
1.5° deviationsIllustration 2.
Icosahedron
20 tetrahedrons made
of 13 points, 1.5° deviations with
shared center point 

The challenge of four simple concepts:
1. A universal scale created by doublings.
A simple scale that starts with a point at the Planck Length (PL), assumes Planck’s logic and mathematics are OK and that the PL singularity, an actual measurement, can be doubled. At each step there is a physical measurement. It takes 202.34 doublings to go from the PL to the Edges of Observable Universe (EOU). See all of the above.2. Nested geometries.
The first doubling renders two points and the second doubling four points. With four points a tetrahedron could be rendered; it is the simplest threedimensional form defined by the fewest number of points. The third doubling renders eight points. With just seven of those points, a pentagonal cluster of five tetrahedrons can be inscribed (Illustration 1). With the fourth doubling, now sixteen points, the icosahedron with its thirteen vertices (points) can be created. (Illustration 2). A tetrahedron within the pentagonal cluster (Illus. 1) can inscribe four smaller tetrahedra and an octahedron within itself with just six of those points (and by dividing each edge in half). More… 
This project
was initiated for
the geometry classes
of Steve Curtis
at The Curtis School,
in River Ridge, Louisiana.Version 2.0.0.1 

Illustration 1.
Five Tetrahedrons
7 points, 1.5°
deviations 

3. Facts and Guesses.
Simple math renders simple facts. What can be done with these numbers, images and forms? What functions can be intuited? Perhaps a challenge to students could be to use buckyballs and the basic Platonic solids to build a most primitive kind of machine. There will be more to come.This quest is a thought experiment that begins at the PL and proceeds with facts and guesses to edge of the observable universe.4. Noncommutative geometry, irrational numbers…
Another idiosyncratic application to number theory, noncommutative geometries, irrational numbers, and dimensionful numbers is to see all of these as the results of a modulus of transformation and gaps between faces of less than 1.5° (as seen in the sevenpoint, fiveregular tetrahedra when each shares an edge). Much more to come… 
© Center for Perfection Studies (Bruce Camber) © My Golden Rules, Inc. (501c3) (Hattie Bryant) © Small Business School http://81018.com 